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Saddles in the Energy Landscape: Extensivity and Thermodynamic Formalism
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We formally extend the energy landscape approach for the thermodynamics of liquids to account for
saddle points. By considering the extensive nature of macroscopic potential energies, we derive the
scaling behavior of saddles with system size, as well as several approximations for the properties of
low-order saddles (i.e., those with only a few unstable directions). We then cast the canonical partition
function in a saddle-explicit form and develop, for the first time, a rigorous energy landscape approach
capable of reproducing trends observed in simulations, in particular, the temperature dependence of the
energy and fractional order of sampled saddles.
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that the configurational entropy plays a key role in dy-
namics [3,6].

or exp�N ln�g0�=NS� � exp�N�1� [11]. Our notation
for the density-dependent constant �1 indicates its
In recent years significant effort has been devoted to
the study of supercooled liquids and their glasses [1]. An
important aspect of these technologically significant [2]
systems is the interplay between dynamic and thermo-
dynamic processes, which is thought to play a key role
in their kinetic slowdown and eventual falling out of
equilibrium at the glass transition [3]. The energy land-
scape formalism of Stillinger and Weber has been a use-
ful tool in the theory of supercooled liquids [4]. In this
description, a system’s configuration space is partitioned
into basins surrounding local energy minima. Termed
‘‘inherent structures,’’ these minima correspond to me-
chanically stable particle packings and are described
statistically by their depth: exp�N�����d� gives the scal-
ing of the number of distinct minima with per-particle
potential energy (or depth) � � d�=2, where N is the
number of particles and � is called the basin enumeration
function (implicitly density dependent). Here, ‘‘distinct’’
refers to minima differing by more than mere particle
permutation. This formalism permits a rigorous trans-
formation of the canonical partition function,

Z �
Z

eN����������avib��;���d�; (1)

where � � 1=kBT and avib, the vibrational free energy, is
the per-particle free energy when the system is confined
to an average basin of depth � at the given density. For
each temperature in the thermodynamic limit, the system
samples basins of a well-defined energy �	; deeper basins
are accessed as the temperature decreases. One identifies a
configurational entropy, NkB���	�, which is that part of
the entropy due to the multiplicity of amorphous configu-
rations explored by the system. Good functionalities can
be rationalized for � and avib(and measured in computer
simulations) such that the partition function can be ex-
plicitly evaluated [5]; this approach is also useful for
characterizing kinetic processes as it has been observed
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Our work aims to extend the energy landscape formal-
ism to include a description of higher order stationary
points, i.e., saddles in the landscape [7]. This approach
provides a natural connection with dynamics [8,9], but is
more intricate than minima alone because, in addition to
their energy, saddles are also classified by their order —
the number of directions with negative curvature. In this
Letter, we begin by deriving the extensivity properties of
saddles and propose their corresponding enumeration
function.We then derive a saddle ‘‘equipartition’’ theorem
and show the expected scaling behavior for low-order
saddles. Finally, we give the appropriate form of the
partition function in this formalism and demonstrate its
utility for describing the behavior of supercooled liquids.

Our consideration of saddles relies on an extensive
macroscopic potential energy, i.e., that a macroscopic
system of N particles can be effectively divided into
M 
 N equivalent subsystems with negligible boundary
interactions. The number of particles in each subsystem is
macroscopic, NS � 1, but the number of subsystems is
also large, NS 
 N. This condition is satisfied by most
common types of molecular interaction (notable excep-
tions include molecules with long-range interactions or
which are themselves macroscopic in size). For a single-
component system of structureless particles, the potential
energy can then be written as

U�rN� � U�rNS

�1�� 
 U�rNS

�2�� 
 . . .
 U�rNS

�M�
�; (2)

where U is the potential energy function, rN �
fr1; r2; . . . ; rNg gives the positions of the particles, and
rNS

�i� are the corresponding positions of the NS particles
in subsystem i. Here, any stationary point in the over-
all system can be viewed as a combination of station-
ary points in each subsystem. It is straightforward to
determine the scaling behavior of minima [10]: if the
number of distinct minima in each subsystem is g0, the
total number due to their possible combinations is gM

0 ,
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correspondence with the total number of inherent struc-
tures (not of a particular energy); equivalently, �1 is the
maximum value of the basin enumeration function.

For saddles, one must consider their order n, the num-
ber of negative eigenvalues in the Hessian matrix, Hij �
@2U=@ri@rj. Imposition of Eq. (2) gives rise to a Hessian
which is reducible in each of the subsystems; therefore,
the total number of negative eigenvalues is the sum of that
for each of the subsystems. In other words, the saddle
order in the total system is the sum total of the orders of
the subsystems. We consider a particular distribution of
the total saddle order n among the subsystems, letting Mi
be the number of subsystems containing saddles of order
i � 0; 1; . . . ; dNS (d � dimensionality). In this notation,
the constraints are

P
iMi � M and

P
iiMi � n. For an

overall saddle order n and a particular distribution fMig,
the number of distinct saddles is


n�fMig� �

�
M!=

Y
i

Mi!

�Y
i

gMi
i ; (3)

where gi is the number of distinct saddles of order i in a
subsystem. The total number of saddles, however, must be
the sum of 
n�fMig� for all possible distributions fMig.We
will find that one particular distribution, fMigmax, over-
whelmingly dominates this sum. First, we switch to an
‘‘intensive’’ notation by introducing the following vari-
ables: mi � Mi=M, and x � n=dN is the overall frac-
tional saddle order. Insertion into Eq. (3) and application
of Stirling’s approximation yields


x�M; fmig� �

�Y
i

�gi=mi�
mi

�
M

: (4)

Similarly, the constraint equations in intensive form be-
come

P
imi � 1 and

P
i�i=dNS�mi � x. These constraints

and the terms inside the brackets in Eq. (4) are all
independent of the number of subsystems M. As a result,
the distribution fmigmax which maximizes the term in
brackets depends only on the overall fractional saddle
order x. In the thermodynamic limit, M � N=NS ! 1,
this maximum term dominates the sum over all distribu-
tions fmig. These considerations lead directly to the saddle
scaling behavior:


x�N� �

�Y
i

�gi=mi�
mi

�
N=NS

max
� exp�N�1�x��; (5)

where 
x gives the number of distinct saddles of frac-
tional order x. Here, we have introduced the generalized
function �1�x� which characterizes saddle scaling behav-
ior and has the property �1�x ! 0� � �1. Notice that
the relevant order parameter for saddles is their frac-
tional order, such that exp�N�1�x��dx gives the number of
saddles with fractional order x � dx=2.

Returning to the subsystem scenario, we now find the
distribution fmigmax which gives the dominant saddles in
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the system. To do so, one maximizes the term in brackets
in Eq. (4) or, equivalently, its logarithm. By accounting
for the constraints with the usual Lagrange multipliers
and using Eq. (5) for gi � exp�NS�1�i=dNS��, the follow-
ing result is obtained:

mi �
exp�NS�1�zi� � �zi�P

i0
exp�NS�1�zi0 � � �zi0 �

; (6)

where zi � i=dNS is the fractional order of a subsystem.
Here � is a Lagrange multiplier ensuring the constraintP

izimi � x. Because the terms in the exponential grow
with the size of the subsystems, which are themselves
macroscopic, mi is essentially zero for all i except one,
imax. With this simplification, the constraint yields imax �
n=M, or zmax � x. In other words, the total saddle order is
distributed across the subsystems such that their frac-
tional saddle order is equivalent to each other and to the
overall fractional order. This is in effect an equipartition
of saddle order across the geometry of the system.

Such equipartition has important consequences for
low-order saddles; it implies that the majority are built
from a collection of localized first-order saddles. In this
sense, each direction of negative curvature in the poten-
tial energy corresponds to an elementary saddle ‘‘defect’’
in an inherent structure. This observation can be used to
determine the approximate behavior of 
x for small
values of x. Assuming that �dN noninteracting, first-
order defects are possible for any inherent structure,
where � is N independent,


x
1 � exp�N�1���dN�!=��dN � xdN�! �xdN�!: (7)

The combinatorial term accounts for the number of ways
of picking xdN independent diffusive directions from the
�dN available. Taking the logarithm and applying
Stirling’s approximation,

�1�x 
 1� � �1 � dx ln
x
�
� d�� � x� ln

�
1�

x
�

�
: (8)

It follows that for a system containing noninteracting
first-order saddles that the average saddle energy depends
linearly on order: �n � �0 
 n��1 ��0�, where �n is
the average energy of an nth order saddle. This trend has
been discussed previously in theoretical work [7] and has
been found in simulation studies to be appropriate
[12,13]. One must bear in mind, however, that this be-
havior and the equipartition of saddles apply to the entire
ensemble of stationary points, of which only a minute
fraction are sampled at low temperature. A system may
require, for example, the cooperative movement of
many molecules in order to reach nearby saddles, which
may necessitate high-order, low-energy stationary points.
If the low-T linear relationship between saddle order
and energy observed in simulation is, indeed, the result
of a first-order defect scenario, then cooperativity arises
035506-2
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because the direction of negative potential energy curva-
ture about these points is a superposition of several mole-
cules’ atomic coordinates.

The considerations so far have categorized saddles only
by their fractional order. Following the approach used for
inherent structures [4], one might extend this description
to potential energy. We therefore introduce the saddle
enumeration function, ���; x�, for which the expression
exp�N���; x��d�dx is proportional to the number of
saddles with potential energy per-particle � � d�=2
and of fractional order x � dx=2 [14]. [The basin enu-
meration function is retrieved from ���; x � 0�.] This
extension allows a meaningful casting of the canonical
partition function in which configuration space is divided
into ‘‘basins’’ surrounding saddle points [15]:

Z �
Z x�1

x�0

Z �max

�min

eN����;x������avib��;�;x��d�dx: (9)

In this equation, avib is the vibrational free energy around
a stationary point of energy � and fractional order x;
formally it is given by

e��Navib��;�;x� � ��dN

�Z
�k

e���U�rN��N��drN

	
�;x

; (10)

where � is the thermal de Broglie wavelength, the average
is restricted to saddle points of energy � and order x, and
the integral for a particular saddle k is performed over its
associated configuration space �k [15]. In the large sys-
tem limit, the integral in Eq. (9) is dominated by the
maximum in the exponential, and the conditions for
equilibrium can be written as

@�
@�

� �
�
1


@avib

@�

�
;

@�
@x

� �
@avib

@x
: (11)

The simultaneous solution to these equations provides the
average saddle energy �	 and order x	 sampled by the
system at specified temperature. The total Helmholtz
free energy is then A=N � avib��; �	; x	� 
 �	 �
kBT���	; x	�. One can identify from this equation a
per-particle saddle entropy, kB�, which converges on the
conventional Stillinger-Weber configurational entropy at
very low temperatures when the system spends most of its
time near minima and x	 asymptotes to zero. This point
of view sets the stage for a more rigorous connection with
dynamics, for which x	 contains pertinent information.

The functions � and avib completely determine the
system thermodynamics. We now show that reasonable
assumptions about their functional form result in a physi-
cally realistic and insightful picture. Our analysis ad-
dresses results for a well-studied, binary glass former
for which numerical data exist [9,12,13,16,17]. First, we
assume the vibrational free energy to be independent of
saddle energy, avib��;�; x� � avib��; x�. This is rigor-
ously true for minima at absolute zero, but remains a
working simplification in our analysis. Furthermore, we
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model the vibrational free energy in the classical har-
monic approximation [18]:

e��Navib � ��dN

�Z l

�l
e��!Sr2dr

�
dN�n

�Z l

�l
e�!Ur2dr

�
n
;

(12)

�avib � d ln�T1�x
S Tx

U=T� � x ln erfi















�!Ul2

q

� d ln�TS=T� � x�C� � ln�#C��=2�; (13)

where !S; !U � 1
2 j

@2U
@r2

j are half the geometric mean cur-
vatures of stable and unstable modes, respectively; TS and
TU are the corresponding Einstein temperatures [18]; l is
a length scale characteristic of the saddle’s associated
configuration space volume [19]; and erfi is the imaginary
error function. Here, the small contribution from the
stable-mode error function has been neglected. In the
last line, we assume !S � !U and use the asymptotic
expansion of the error function, erfi�x� ! exp�x2�=x






#

p
,

for the low T limit. C � !Ul2 is a lumped constant. In
general, the harmonic approximation is increasingly valid
for stable modes at low temperatures, but we have made
liberal use of its application to the unstable modes, espe-
cially in that the final avib depends nontrivially on the
length scale l characterizing the dN-dimensional integral.
Nonetheless, this approximation provides a starting point
for analysis, and we leave investigation of more accurate
forms to future work.

For the saddle enumeration function, we assume a
Gaussian form in energy, consistent with previous simu-
lation studies [9,17,20,21]:

���; x� � �1�x��1� �� � ��x��2=�2�; (14)

where � is the midpoint energy of saddles of fractional
order x and � is their characteristic energy range. For the
dependence of the parameters in this expression on frac-
tional saddle order, we use Eq. (8) for �1, implement the
low-order linear relationship for � such that ��x� �
�0 
 $x, and assume � to be roughly constant.

The usefulness of this approach can be seen in the
predictions of the theory. Such an analysis is possible by
solving Eq. (11) with the simplified expressions for the
vibrational free energy and the saddle enumeration func-
tion. We choose representative parameters based on pre-
vious simulations [22]. The results in Fig. 1 demonstrate
that the theory and assumptions capture the low-T behav-
ior observed in simulations and are a promising starting
point for the approach. We observe some flexibility in the
choice of the fitted parameters, though these might read-
ily be investigated in detail by a future simulation study.

In summary, we have presented a thermodynamic for-
malism which includes higher order stationary points
in the energy landscape. Through a reformulation of
the canonical partition function and by using several
physically motivated simplifications, we show that this
035506-3



FIG. 1. (Top) Plot of the equilibrium inherent structure en-
ergy and fractional saddle order. The lines are the predictions of
the theory and the symbols are the respective results for a
binary Lennard-Jones system [12,23]. The theoretical x	�T�
curve approaches zero near TMCT � 0:435, the mode-coupling
temperature [16], but remains finite until absolute zero.
(Bottom) Corresponding plot of saddle elevation energy as a
function of equilibrium saddle order.
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formalism captures important trends in the behavior of
low-T glass-forming materials. Future work will inves-
tigate the relationship suggested by this approach between
liquid kinetics and thermodynamics.
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