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Density fluctuations in many-body systems
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The characterization of density fluctuations in systems of interacting particles is of fundamental importance
in the physical sciences. We present a formalism for studying local density fluctuations in two special subvol-
umes~centered around either a reference particle or some arbitrary point in the system! termedparticle and
void regions, respectively. We present formal expressions for the probability, as well as the moments, associ-
ated with finding exactlyn particles inside of either of these subvolumes. Furthermore, we derive the relation-
ship between the probability functions and closely related quantities of interest, such as thenth nearest-
neighbor distribution functions and then-particle conditional pair distribution functions associated with each
region. We solve for these quantities exactly in the one-dimensional hard-rod system. The methods developed
for studying the hard-rod fluid are applicable for studying a wide class of one-dimensional systems.
@S1063-651X~98!06012-7#
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I. INTRODUCTION

Spontaneous fluctuations give rise to rich and comp
behavior in many-body systems. Of particular interest are
local fluctuations that occur within a given subset of a s
tem’s total volume. For instance, it is instructive to ask t
following question: What is the probability of findingexactly
n particle centers within a spherical regionVV(r ) of radiusr,
centered at an arbitrary point in the system? The answe
this question is given by then-particlevoid probability func-
tion EV(r ;n), a quantity that contains a wealth of thermod
namic and structural information about the system@1–5#. A
connection can be made with equilibrium thermodynam
through the second central moment, or variance, of
distribution, provided that the subvolume is allowed to pa
to the thermodynamic limit @^n&→`,r→`,^n&/VV(r )
→finite#. That is, the fluctuations in particle number are
lated to the isothermal compressibilitykT via

^n2&2^n&2

^n&
5rkTkT , ~1.1!

wherer is the bulk number density,k is Boltzmann’s con-
stant, andT is the temperature.

In the case of theequilibrium D-dimensional hard-spher
fluid, the excess chemical potential can be determined f
the n50 limit of the void probability function

mex52kT ln@EV~s;0!# ~1.2!

where s is the hard-sphere diameter. From a geome
viewpoint, the quantityEV(r ;0) represents the fraction o
space available for the addition of another hard sphere
radiusr 2s/2 into the system~commonly referred to as th
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system’savailable space!. It is closely related to the firs
(n51) nearest-neighbor distribution function HV(r ;1),

HV~r ;1!52
]EV~r ;0!

]r
, ~1.3!

which is the probability density associated with finding t
nearest particle a radial distancer away from a given point
@6#. It follows that the nearest-neighbor distribution functio
is equivalent to the area of the surface bounding the availa
space, normalized by the total volume.

Reiss, Frisch, and Lebowitz@6# derived an exact analyti
cal series representation forEV(r ;0) in terms of the so-called
n-particle probability density functionsr1 ,r2 , . . . ,rn in
their studies of the scaled-particle theory of liquids. Furth
more, both formal series representations@7# and approxima-
tions @8,7,9# for D-dimensional hard-sphere fluids have be
obtained for the lowest-order versions of these functio
namely,EV(r ;0) andHV(r ;1). Themost recent approxima
tions @9# are accurate even for themetastableextension of
the fluid branch, which is conjectured to end in arandom
close-packedstate.

In the case of the generaln-particle probability function
EV(r ;n), a formal series representation has been obtai
@10#; however, a limited knowledge of then-particle density
functions precludes its systematic determination in mo
systems. Recent simulation studies of liquid water@3# and
the three-dimensional hard-sphere fluid@4# suggest that
EV(r ;n) may be approximately Gaussian inn, a feature that
is closely related to the Gaussian field model of liquids@11#
and the Pratt-Chandler theory of hydrophobicity@12#. In this
work, we develop a connection between the void probabi
function and the voidnth nearest-neighbor distribution func
tion HV(r ;n). Furthermore, we derive an exact solution f
EV(r ;n) andHV(r ;n) in the hard-rod fluid.

Torquato and co-workers@7,9# studied related quantitie
when there is a particle center at the origin of the subvolum
referred to as the ‘‘particle’’ quantities. In particula
7369 © 1998 The American Physical Society
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7370 PRE 58TRUSKETT, TORQUATO, AND DEBENEDETTI
EP(r ;0) is the probability that a cavity of radiusr surround-
ing the reference particle is free of other particle centers.
central particle’s nearest-neighbor distribution function is
lated toEP(r ;0) via

HP~r ;1!52
]EP~r ;0!

]r
. ~1.4!

Knowledge of the nearest-neighbor distribution function is
importance in a variety of problems, including stellar dyna
ics @13#, liquids and glasses@14–19#, biological systems
@20,21#, processing of ceramics@22#, transport in heteroge
neous materials@23–25#, and surface adsorption@26#. Mac-
Donald@27# put forth simple approximations for the partic
nearest-neighbor distribution function in hard-sphere s
tems, and more accurate approximations have since bee
rived @7,9,28# for general interpenetrable-sphere models
both monodisperse and polydisperse systems.

In this paper, we investigate generalizations of the afo
mentioned particle quantities. Specifically, we introduce
particle probability function EP(r ;n), defined as the prob
ability of finding exactly nadditional particle centers within
a radial distancer of a given reference particle center. Sim
larly, we can define a ‘‘particle’’nth nearest-neighbor distri
bution functionHP(r ;n), representing the probability den
sity associated with finding the center of thenth nearest
neighbor to a reference particle a distancer away from the
reference particle center. In Sec. II of this paper, we der
formal expressions for the particle probability functio
EP(r ;n) and its moments. Furthermore, we derive gene
representations for thenth nearest-neighbor distributio
functions HV(r ;n) and HP(r ;n) and then-particle condi-
tional pair distribution functionsGV(r ;n) and GP(r ;n).
Since these quantities depend, generally, on all of then-
particle probability density functions, their explicit evalu
tion is restricted to the simplest of models. In Sec. III w
evaluate, exactly, the void and particle quantities for an eq
librium fluid of hard rods (D51), the most fundamenta
nontrivial many-body system.

II. DEFINITIONS AND GENERAL RELATIONS

We consider systems of interactingD-dimensional
spheres of diameters spatially distributed in a volumeV
according to theN-particle probability densityPN(RN). Spe-
cifically, PN(RN) is the probability density associated wi
finding particles 1,2, . . . ,N in a particular configurationRN

[$R1 ,R2 , . . . ,RN%. As can be seen,PN(RN) normalizes to
unity. The reducedn-particle probability densityrn (n,N)
is given by

rn~Rn!5
N!

~N2n!! E PN~RN!dRN2n, ~2.1!

where dRN2n representsdRn11•••dRN . The reducedn-
particle probability densityrn(Rn)dRn characterizes the
probability of simultaneously finding the center of anyn par-
ticles at R1 ,R2 , . . . ,Rn . With this in mind, the ensemble
average of any functionF(RN) that depends on the spati
distribution of the particles is given by
e
-

f
-

s-
de-
r

-
e

e

l

i-

^F~RN!&5E F~RN!PN~RN!dRN. ~2.2!

If the system is statistically homogeneous, thern(Rn) de-
pend on the relative displacementsR22R1 ,R3
2R1 , . . . ,Rn2R1 . Throughout this work, it should be un
derstood that the thermodynamic limit has been taken,
N→` andV→`, wherer[N/V remains some finite con
stant.

In order to study fluctuations on a local scale, it is nec
sary to define the subvolume of interest. We focus on
so-called ‘‘void’’ and ‘‘particle’’ regions~see Fig. 1!. The
void region VV(r ) is a D-dimensional spherical region o
radius r that is centered at an arbitrary position in the m
dium. Likewise, a particle regionVP(r ) is a spherical region
of radiusr that is centered on a given reference particle.
is standard practice, we define a characteristic function
the void region by

CV~x;r !5H 1, xPVV~r !

0, x¹VV~r !.
~2.3!

Similarly, a characteristic function can be defined for t
region surrounding the reference particle

CP~x;r !5H 1, xPVP~r !

0, x¹VP~r !.
~2.4!

The characteristic functions are created for mathemat
convenience and will prove useful in deriving formal repr
sentations of the quantities of interest.

A. Exact integral equations for the void
and particle probability functions

In this section we will present formal expressions for tw
special types of probability functions,EV(r ;n) andEP(r ;n)
defined as follows:

FIG. 1. Schematic representation of regionsVV(r ) andVP(r ).
The subvolumeVP(r ) is centered on some reference particle, wh
VV(r ) is centered on an arbitrary point in the system.
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EV~r ;n!5@probability of finding a regionVV~r !,which is aD-dimensional sphere of radius
r ~centered at some arbitrary point!, containing exactlyn particle centers]. ~2.5!

EP~r ;n!5@probability that, given aD-dimensional sphere of diameters at some position in the system,
the region VP~r !, which is a sphere of radiusr encompassing this central particle,
contains exactlyn additional sphere centers.] ~2.6!

Refer to Fig. 1 for a schematic of the regionsVV(r ) andVP(r ).
Vezzetti @10#, within the framework of the canonical ensemble, previously derived an expression for the genera

probability functionEV(r ;n) in terms of then-particle probability density functions. Specifically, he showed

EV~r ;n!5(
i 5n

N
~21! i 2n

~ i 2n!!n! EVV~r !
r i~R1•••Ri !dRi . ~2.7!

Following a similar development, we will derive a formal integral equation for the particle probability functionEP(r ;n).
The probability of finding zero particles in a regionVP(r ) surrounding a given reference particle can be written in te

of the characteristic function for that region,

EP~r ;0!5K )
i 51

N21

„12CP~xi ;r !…L , ~2.8!

where particleN is taken as the reference and^•••& denotes an ensemble average. If the product in Eq.~2.8! is expanded, one
obtains

EP~r ;0!512 (
i 51

N21

^CP~xi ;r !&1 (
$ i , j %

N21

^CP~xi ;r !CP~xj ;r !&2 (
$ i , j ,k%

N21

^CP~xi ;r !CP~xj ;r !CP~xk ;r !&1••• ~2.9!

511 (
i 51

N21
~21! i~N21!!

i ! ~N212 i !!
^CP~x1 ;r !•••CP~xi ;r !&, ~2.10!
nd
th
th

nd
e

lit

itl

b-

me

n-
e

where$•••% indicates a sum over all pairs, triplets, etc., a
the reference particle is excluded from all sums. When
averages in the canonical ensemble are shown explicitly,
becomes

EP~r ;0!511 (
i 51

N21
~21! i

r1~RN!i !

3E
VP~r !

r i 11~R1 , . . . ,Ri ,RN!dRi ~2.11!

which is precisely the result derived by Torquato, Lu, a
Rubinstein@7#. Using this formalism, the extension to th
general particle probability functionEP(r ;n) is straightfor-
ward. In terms of the characteristic functions, the probabi
is given by

EP~r ;n!5
~N21!!

~N212n!!n!

3K )
i 51

n

CP~xi ;r ! )
j 5n11

N21

„12CP~xj ;r !…L .

~2.12!

Expanding the products, and showing the averages explic
yields the desired integral relation
e
is

y

y,

EP~r ;n!5 (
i 5n

N21
~21! i 2n

~ i 2n!!n!r1~RN!

3E
VP~r !

r i 11~R1•••Ri ,RN!dRi . ~2.13!

It is worth noting that both the void and the particle pro
ability functions depend on all of then-particle probability
density functionsr1 ,r2 , . . . ,rn .

B. Moments

Using a generating function approach, Ziff@1# was able to
derive an expression for themomentsof the void probability
function EV(r ;n). In particular, he was able to show that

K n!

~n2k!! L
VV~r !

5E
VV~r !

rk~R1•••Rk!dRk, ~2.14!

where ^•••&VV(r ) represents an average in the subvolu

VV(r ). This should not be confused with a similar relatio
ship involving the n-particle densities that appear in th
grand canonical ensemblern

gr(R1•••Rn), which obey the
normalization

K N!

~N2k!! L
gr

5E
Vgr

rk
gr~R1•••Rk!dRk, ~2.15!
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whereVgr is the volume,N is the number of particles in th
system, and̂•••&gr indicates an average in the grand cano
cal ensemble. Equations~2.14! and ~2.15! become asymp-
totically equivalent only as the thermodynamic limit is a
proached in both systems, i.e., at a fixed density b
-

ns
n-
id

ex

icl
-

h

VV(r )→` andVgr→`.
Following an approach similar to that of Ziff@1#, we will

proceed to derive a relationship for the moments of the p
ticle probability functionEP(r ;n). It is convenient to recas
EP(r ;n), of Eq. ~2.13!, in the following form:
EP~r ;n!5
1

n! F S ]

]t D
nS 11 (

i 51

N21
t i

i !r1~RN!
E

VP~r !
r i 11~R1•••Ri ,RN!dRi D G

t521

. ~2.16!

Using Eq.~2.16! and the binomial theorem, it is simple to show that

(
n50

N21

jnEP~r ;n!511 (
i 51

N21
~j21! i

i !r1~RN!
E

VP~r !
r i 11~R1•••Ri ,RN!dRi . ~2.17!

From Eq.~2.17!, it follows that

F S ]

]j D k

(
n50

N21

jnEP~r ;n!G
j51

5 (
n5k

N21
n!

~n2k!!
EP~r ;n!5 K n!

~n2k!! L
VP~r !

5
1

r1~RN!
E

VP~r !
rk11~R1•••Rk ,RN!dRk,

~2.18!

yielding the desired moment relation forEP(r ;n). Notice that while bothEV(r ;n) andEP(r ;n) depend on all of then-particle
probability density functions, thekth moment of either distribution depends only onr1 ,r2 , . . . ,rk .

C. Nth nearest-neighbor distribution functions

In this section we discuss two general types of neighbor distribution functions,HV(r ;n) andHP(r ;n), defined as follows:

HV~r ;n!dr5~probability that at an arbitrary point in the system the center of thenth nearest
particle lies at a distance betweenr and r 1dr), ~2.19!

HP~r ;n!dr5~probability that, given aD-dimensional sphere of diameters at some position in the system,
the center of thenth nearest particle lies at a distance betweenr and r 1dr). ~2.20!
to
nt
The functionsHV(r ;n) and HP(r ;n) will be referred to as
the void and particlenth nearest-neighbor distribution func
tions, respectively.

The neighbor functionsHV(r ;n) and HP(r ;n) are inti-
mately related to the void and particle probability functio
EV(r ;n) andEP(r ;n) discussed earlier. In fact, the relatio
ship can be seen from simple counting arguments. Cons
a particular subvolumeVV(r ). The probability that the re-
gion contains at leastn particles is given by*0

r HV(r ;n)dr.
The only other possibility is that there are less thann par-
ticles in the region, and thus the relationship can be
pressed

(
i 50

n21

EV~r ; i !512E
0

r

HV~r ;n!dr. ~2.21!

An identical argument can be invoked to arrive at the part
expression
er

-

e

(
i 50

n21

EP~r ; i !512E
0

r

HP~r ;n!dr. ~2.22!

Differentiation with respect tor gives

HV~r ;n!52 (
i 50

n21
]EV~r ; i !

]r
~2.23!

and

HP~r ;n!52 (
i 50

n21
]EP~r ; i !

]r
. ~2.24!

For statistically homogeneous media, it is convenient
write the neighbor functions as a product of two differe
correlation functions. Specifically, forD-dimensional par-
ticles let
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HV~r ;n!5rsD~r !GV~r ;n21!EV~r ;n21! ~2.25!

and

HP~r ;n!5rsD~r !GP~r ;n21!EP~r ;n21!, ~2.26!
al

al
r

id

an
-

.
n-
ic

te
ce
.,
wheresD is the surface area of aD-dimensional sphere o
radiusr. For example,sD52,2pr ,4pr 2 for D51, 2, and 3,
respectively. Given definitions~2.5!, ~2.6!, ~2.19!, and
~2.20!, the n-particle conditional pair distribution function
GV(r ;n) andGP(r ;n) must have the following definitions:
rsD~r !GV~r ;n!dr5@probability that, given a regionVV~r ! containingn particle centers,

particle centers are contained in the spherical shell of volumesDdr encompassing the region],
~2.27!

rsD~r !GP~r ;n!dr5@probability that, given a regionVP~r ! containingn particle centers
~ in addition to the central particle!, particle centers are contained in the
spherical shell of volumesDdr surrounding the central particle]. ~2.28!
oid
the

as-
d

-

r-
is
te
Note thatGV(r ;0) is simply the contact value of the radi
distribution function for a test particle of radiusr 2s/2 and a
particle of radius s/2. Furthermore, whenr 5s, then
GV(s;0)5GP(s;0) is just the contact value of the radi
distribution functiong2(s) for identical spheres of diamete
s. For an equilibrium distribution of spheres,g2(s) can be
related to the pressure of the system@29#. In addition, asr
→`, the sphere of radiusr may be regarded as a plane rig
wall relative to the particles, henceGV(`,n)5GP(`,n).

Finally, we can write down an expression for the ‘‘me
nth nearest-neighbor distance’’l (n) between particles as fol
lows:

l ~n!5E
0

`

rH P~r ;n!dr. ~2.29!

For the case of impenetrable spheres, Eq.~2.29! provides an
operational definition for the random close-packed state
particular, one can define@9# the random close-packed de
sity to be the maximum packing fraction over all ergod
isotropic ensembles at whichl (1)5s.

D. Fully penetrable particles: ideal gas limit

We now consider the case of spatially uncorrela
spheres. Since this simple model represents randomly
tered points, then-particle probabilities become trivial, i.e
rn5rn. In this limit, first considered by Hertz@30#, we find,
via Eqs.~2.7! and ~2.13!,

EV~r ;n!5EP~r ;n!5
„rvD~r !…n

n!
exp„2rvD~r !…,

~2.30!

wherevD(r ) is the volume of aD-dimensional sphere,

vD~r !5
rsD~r !

D
. ~2.31!
In

,

d
n-

Note that there is no distinction between particle and v
quantities in the absence of correlations. The moments of
distribution are given by

K n!

~n2k!! L
VV~r !

5 K n!

~n2k!! L
VP~r !

5„rvD~r !…k.

~2.32!

From Eqs.~2.21!, ~2.22!, ~2.25!, and ~2.26!, it is simple to
show that

HV~r ;n!5HP~r ;n!5rsD~r ! (
i 50

n21

EV~r ; i !F12
i

rvD~r !G
~2.33!

and

GV~r ;n!5GP~r ;n!5(
i 50

n
„rvD~r !…i 2nn!

i ! F12
i

rvD~r !G51.

~2.34!

When discussing the ideal gas limit, it is appropriate to
sign a diameters to the particles, where it is understoo
that they are fully penetrable. HereEV(s/2;0)
5exp„2rvD(s/2)… is the void fraction. This stands in con
trast to totally impenetrable~hard! spheres, where the void
fraction is 12rvD(s/2).

E. Totally impenetrable particles: hard-sphere limit

In a system ofD-dimensional, mutually impenetrable pa
ticles of diameters, very few exact results are known. Th
is due to the fact that it is generally impossible to formula
expressions for the infinite set ofn-particle density functions
r2 , . . . ,rn(n→`). For small ranges ofr, some exact results
are available. For instance, it is clear from definitions~2.6!
and ~2.20! that

EP~r ;0!51 for 0<r<s, ~2.35!
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HP~r ;0!50 for 0<r<s ~2.36!

due to impenetrability. Further, it follows from Eq.~2.26!
that

GP~r ;0!50 for 0<r<s. ~2.37!

For the void quantities, a spherical cavity can contain
most one particle center forr<s/2. Thus we have

EV~r ;0!512r
rsD~r !

D
for 0<r<s/2, ~2.38!

and sinceVV(r ) must contain one or zero particles for th
range ofr, it follows that

EV~r ;1!5r
rsD~r !

D
for 0<r<s/2. ~2.39!

It is also simple to show from Eq.~2.23! that

HV~r ;n!5rsD~r ! for 0<r<s/2, n51 ~2.40!

50 for 0<r<s/2, n.1.
~2.41!

For r 5s/2, then50 void probability function

EV~s/2;0!512rvD~s/2!512h ~2.42!

is equal to 1 minus the reduced densityh, or equivalently,
the void fraction in this system. It follows that then50 limit
of the void conditional pair correlation function is given b

GV~r ;0!5
1

12rrsD~r !/D
for 0<r<s/2. ~2.43!

Although then50 void and particle quantities are not th
same forr ,s, they are related to one another forr>s in
the case of anequilibrium ensemble of hard spheres. In pa
ticular, we have

EP~r ;0!5
EV~r ;0!

EV~s;0!
for r>s. ~2.44!

This conditional probability can be understood by realizi
that a cavity of radiuss is structurally equivalent to a har
sphere in an equilibrium system. For general nonequilibri
packings, Eq.~2.44! will not be true ~see, e.g., Ref.@26#!.
Nevertheless, Eq.~2.44! implies

HP~r ;1!5
HV~r ;1!

EV~s;0!
for r>s ~2.45!

and

GP~r ;0!5GV~r ;0! for r>s ~2.46!

for the equilibrium hard-sphere fluid. Finally, we note th
for equilibrium hard-sphere systems,

GV~`;0!5GV~s;0! for D51, ~2.47!

GV~`;0!5112hGV~s;0! for D52, ~2.48!
t

,

GV~`;0!5114hGV~s;0! for D53, ~2.49!

which are simply the scaled equations of state.
Exact conditions on the quantityGV(r ;n), which arise

due to the packing of hard cores, can be determined.
instance, there is aD-dimensional sphere of radiusr c(n)
(n.0) which is the largest sphere that cannot containn
11 particle centers. Clearly,

GV~r ;n.0!50 for r ,r c~n!. ~2.50!

Many other exact conditions can be derived. For instance
D53 it can be shown that

]kGV

]r k
~s/2;1!50 ;k. ~2.51!

Such conditions could provide a starting point for extend
the scaled-particle theory of fluids.

For the lowest order cases (n50 for EV , EP , GV , and
GP ; n51 for HV andHP), exact results have previousl
been obtained for the equilibrium hard-rod fluid (D51);
see, e.g., Refs.@31,32,7#. For D.1, accurate, approximat
expressions for the void and particle quantities have b
derived for the lowest order cases@7,9#. In Sec. III of this
work we solve for the general quantities, exactly, in the c
of an equilibrium hard-rod fluid.

III. EXACT SOLUTION FOR THE HARD-ROD FLUID

In this section, we will address the statistical geometry
the equilibrium hard-rod fluid. For convenience, we choo
to work with the dimensionless distancex5r /s and the re-
duced densityh5rs. Recall that 12h is equivalent to the
void fraction in systems comprising impenetrable particl
The void and particle subvolumesVV(x) andVP(x) for the
one-dimensional system are shown in Fig. 2.

The hard-rod fluid is unique in two respects, which mak
it amenable to theoretical analysis. First, the presence o
intervening particle, and the lack of any long-range inter
tion, render second neighbors totally ‘‘unaware’’ of ea
other. Secondly, thechord-length or gap-size distribution
function p(h) for this system is known exactly@31,33#:

p~h!5
h

12h
e2[h/~12h!]h, ~3.1!

where p(h)dh represents the probability that the distan
between two neighboring particle centers is between 11h
and 11h1dh. It will be shown that these two features o
the statistical geometry are sufficient to characterize the g
eral quantitiesEV , EP , HV , HP , GV , andGP in the equi-
librium hard-rod system.

A. Void quantities

To study the void probability functionEV(x;n), it is con-
venient to appeal to the following geometric interpretatio
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EV~x;n!5~ the fraction of space in the system inside of which the center of a spherical window
could be placed such that it would contain exactlyn particle centers). ~3.2!
i
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unit
This definition is compelling for the hard-rod fluid because
suggests a simple thought experiment. Specifically,
could scan the entire length of the line with a window
length 2x, and simply record the fraction of space inside
which the center could be placed such that the wind
would contain exactly the prescribed number of particle c
ters.

Moreover, this procedure can be greatly simplified b
cause of the topology of the hard-rod system. In particu
the system may be considered a repeating unit cell~that
spans from one particle center to the next!, with the only
difference between neighboring unit cells being the width
the gap separating the particles as shown in Fig. 3. Furt
more, the probability density associated with observing t
neighboring particles separated by a distanceh is given by
Eq. ~3.1!, quite independent of neighboring gaps.

Consider the quantityEV(x;0), equal to the fraction of
space inside of which the center of the window can be pla
such that no particle centers are inside of it. From Eq.~2.42!,
we know that

EV~x;0!5122hx for x,1/2. ~3.3!

For x> 1
2 , we return to the unit cell picture. For instance, o

could start with the leftmost edge of the window on a parti
center, and then translate the window to the right until
leftmost edge of the window is at the neighboring parti
center. The volume of space in the unit cell that contribu
to the available space ish11122x. In what follows,h1 is
the length of the gap in the unit cell andh2 , . . . ,hn are the
lengths of the nextn21 gaps to the right of the cell. To
calculateEV(x;0) we simply integrate over the number
gaps per unit length that have sizeh1.2x21:

FIG. 2. Schematic representation of~a! VV(x) and~b! VP(x) in
the one-dimensional hard-rod fluid.
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EV~x;0!5E
2x21

`

~h11122x!hp~h1!dh1

5~12h!e2@2h/~12h!#~x21/2! for x> 1
2 .

~3.4!

Since, at most, one particle center can fit inside of a wind
of radiusx, 1

2 , we have

EV~x;1!52hx for x, 1
2 . ~3.5!

For the interval1
2 <x, 3

4 , the fraction of space in the uni
cell contributing to theEV(x;1) is equal to 2(h1112x) if
h1,2x21, and is equal to 2x otherwise, leaving

EV~x;1!5E
0

2x21

2~h1112x!hp~h1!dh1

1E
2x21

`

2xhp~h1!dh1

52~12hx2~12h!e2[2h/~12h!] ~x21/2!!

for 1
2 <x, 3

4 . ~3.6!

It is easily verified that Eq.~3.6! also holds for the region
3
4 <x,1. Forx>1 one must also integrate over all possib
gap sizes ofh2 , yielding

FIG. 3. As the window of size 2x moves from~a! to ~b! it
sweeps out one complete unit cell. The number of cells per
length that have a gap of sizeh1 and gaps of sizeh2 , . . . ,hn21 to
the right is given bypn21 in Eq. ~3.9!.
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EV~x;1!52~122h1hx!e2[2h/~12h!] ~x21!

22~12h!e2[2h/~12h!] ~x21/2!

for x>1. ~3.7!

If one proceeds along these lines, the following general fo
for EV(x;n) in the region (n21)/2<x,n/2 can be deduced

EV~x;n!5 )
j 51

n21 E
0

2x2~n21!2( i 51
j 21 hi dhj H 2x2~n21!

2 (
k51

n21

hkJ pn21~h1 , . . . ,hn21!

52hx2~n21!1 f n~x;h!

3expF2
2h

12hS x2
n21

2 D G ,
for ~n21!/2<x,n/2. ~3.8!

TABLE I. First five polynomialsf n(x;h) defined by Eq.~3.8!
used in determining the void probability functionEV(x;n) for hard
rods.

n fn(x;h)

1 0
2 12h
3 2(122h1hx)
4 (6224h127h218hx220h2x14h2x2)/@2(12h)#

5 2(6236h178h2264h319hx242h2x157h3x16h2x2

218h3x212h3x3)/@3(12h)2#
ity
tie
The quantitypn21(h1 , . . . ,hn21)dh1•••dhn21 is the num-
ber of gaps of sizeh1 per unit length which have gaps o
sizesh2 , . . . ,hn21 directly to the right:

pn21~h1 , . . . ,hn21!

5
hn

~12h!n21
e2[h/~12h!]h1

•••e2[h/~12h!]hn21.

~3.9!

f n(x;h) are polynomials inx that can be easily determine
analytically from the integral in Eq.~3.8!. For convenience,
we have given the first several in Table I. In terms
f n(x;h), the full expression forEV(x;n) can be written

FIG. 4. Void probability functionEV(x;n) for the hard-rod fluid
at a volume fractionh50.5. The lines indicate the exact solutio
obtained from Eq.~3.10!, and the black dots represent Monte Car
simulation data.
EV~x;n!50 for x,~n21!/2

52hx2~n21!1 f n~x;h!expF2
2h

12hS x2
n21

2 D G , for ~n21!/2<x,n/2

5~n11!22hx1 f n~x;h!expF2
2h

12hS x2
n21

2 D G22 f n11~x;h!expF2
2h

12hS x2
n

2D G ,
for n/2<x,~n11!/2

5 f n12~x;h!expF2
2h

12hS x2
n11

2 D G22 f n11~x;h!expF2
2h

12hS x2
n

2D G1 f n~x;h!expF2
2h

12hS x2
n21

2 D G
for x>~n11!/2. ~3.10!
ly
le
The exact results forEV(x;n) are shown in Fig. 4 along with
Monte Carlo simulation data at a packing fraction ofh
50.5.

Once an analytical expression for the void probabil
function has been obtained, all of the related void quanti
can be determined. For example, the generalnth nearest-
s

neighbor distribution functionHV(x;n) and then-particle
conditional pair correlation functionGV(x;n), shown in
Figs. 5 and 6, can be calculated using Eqs.~2.23! and~2.25!,
respectively. Notice that the void quantities vary relative
smoothly in x, a feature that is not shared by the partic
quantities calculated in Sec. III B.
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B. Particle quantities

A different approach is needed for studying fluctuatio
about a reference particle in the one-dimensional equilibr

FIG. 5. Voidnth nearest-neighbor distribution functionHV(r ;n)
for the hard-rod fluid at a volume fractionh50.5. Results are ob
tained from Eqs.~2.23! and ~3.10!.
s

hard-rod fluid. Specifically, symmetry suggests that the pr
lem need only be solved on one side of the reference part
hence we introduce theone-sided particle probability func
tion EP

(1)(x;n) defined in the following manner:

FIG. 6. Void n-particle conditional pair distribution function
GV(r ;n) for the hard-rod fluid at a volume fractionh50.5. Results
are obtained from Eqs.~2.25!, ~2.23!, and~3.10!.
,

EP
~1!~x;n!5~probability that exactlyn sphere centers are within a distancex to the right of the reference particle center.!

~3.11!

To be concrete, let us consider the one-sided functionEP
(1)(x;0), theprobability that no particles are within a distancex to the

right of the reference particle center. Given the chord-length distribution function defined by Eq.~3.1!, this can be written

EP
~1!~x;0!5E

x

` h

12h
e2[h/~12h!] ~y21!dy5e2[h/~12h!] ~x21! for x>1. ~3.12!

Since events to the left and right of the central particle are uncorrelated, we can form the quantityEP(x;0) by squaring the
one-sided result

EP~x;0!5@EP
~1!~x;0!#25e2[2h/~12h!] ~x21! for x>1. ~3.13!

Moving on to then51 case, we note that

EP
~1!~x;1!50 for x,1 ~3.14!

due to the hard-core interaction. Only one particle center can fit in the region 1<x,2 to the right of the reference particle
yielding

EP
~1!~x;1!5

h

12hE1

x

e2[h/~12h!] ~y21!dy512e2[h/~12h!] ~x21! for 1<x,2. ~3.15!

When considering distancesx>2, there are two contributions toEP
(1)(x;1):

EP
~1!~x;1!5S h

12h D 2E
1

x21E
x2y

`

~e2[h/~12h!] ~y21!!~e2[h/~12h!] ~z21!!dz dy1S h

12h D E
x21

x

e2[h/~12h!] ~y21!dy

5S h

12h
~x22!11De2[h/~12h!] ~x22!2e2[h/~12h!] ~x21! for x>2. ~3.16!
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The first integral in Eq.~3.16! represents the contribution from configurations when the first particle center to the right is
thanx21 to the reference particle center, and the second particle center to the right is no closer thanx to the reference center
The second integral accounts for configurations in which the first particle is betweenx21 andx to the right of the reference
center, irrespective of the second particle’s position.

We can have exactly one particle withinx of the reference center by either having one on the left of the central particle
none on the right or vice versa, leaving

EP~x;1!52„EP
~1!~x;1!…„EP

~1!~x;0!…52e2[h/~12h!] ~x21!@12e2[h/~12h!] ~x21!# for 1<x,2

52e2[h/~12h!] ~x21!F S h

12h
~x22!11De2[h/~12h!] ~x22!2e2[h/~12h!] ~x21!G for x>2. ~3.17!

Following these arguments, one can arrive at a general form for the one-sided probability functionEP
(1)(x;n):

EP
~1!~x;n!50 for 0<x,n

512 (
i 50

n21 S h

12h D i ~x2n! i

i !
e2[h/~12h!] ~x2n! for n<x,n11

5S h

12h D n @x2~n11!#n

n!
e2[h/~12h!][ x2~n11!]1 (

i 50

n21 S h

12h D iF @x2~n11!# i

i !
e2[h/~12h!][ x2~n11!]

2
@x2n# i

i !
e2[h/~12h!][ x2n] G for x>n11. ~3.18!
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The full particle probability functionEP(x;n) is then deter-
mined from the simple relation

EP~x;n!5(
i 50

n

EP
~1!~x; i !EP

~1!~x;n2 i ! ~3.19!

which counts all ‘‘left-side, right-side’’ combinations whic
sum to the desired result. Figure 7 shows the exact res
along with a comparison with Monte Carlo simulation da
Notice that the peak in theEP(x;2) curve is higher than the
peak in theEP(x;1) curve for reduced densityh50.5. This
feature is a manifestation of the natural packing symme

FIG. 7. Particle probability functionEP(x;n) for the hard-rod
fluid at a volume fractionh50.5. The lines indicate the exact so
lution obtained from Eqs.~3.18! and ~3.19!, while the black dots
represent Monte Carlo simulation data.
lts
.

y

that develops about the reference particle in one dimens
In other words, the coordination shell consists of a pair
particles, one to the left and one to the right. As the pack
fraction is increased, the peaks in the even number cu
(n52,4,6, . . . ) become extremely pronounced, as compa
to their odd counterparts~see Fig. 8!.

Recent computer simulations of liquid water@3# and the
three-dimensional hard-sphere fluid@4# suggest that the
quantityEV(x;n) in simple fluids may be accurately approx
mated by a Gaussian distribution inn, at least far away from
very high or very low densities. In Fig. 9 we plot the partic
probability functionEP(x;n) versusn for several window
sizes at a packing fraction ofh50.5. The points generate

FIG. 8. Particle probability functionEP(x;n) for the hard-rod
fluid at a volume fractionh50.8, illustrating the pronounced pea
heights for even values ofn. This feature is related to a packin
symmetry described in the text.
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from Eq. ~3.19! were fit to Gaussian curves to test this a
proximate form for the particle version of the probabili
function. Although the functionEP(x;n) is nearly Gaussian
in n near the peak, significant deviations can be seen in
tails of the distribution. This should be expected, as it
known that bothEV(x;n) andEP(x;n) depend on all of the
n-particle density functions, and thus on all higher momen

Using relations~2.24! and ~2.26!, one can determine th
particle nth nearest-neighbor distribution functionHP(r ;n)
~Fig. 10! and then-particle conditional pair distribution func
tion GP(r ;n) ~Fig. 11!, respectively. Note the appearance
a kink in the second nearest-neighbor distribution funct
HP(r ;n). This abrupt change, occurring atx52, corre-
sponds to the first distance at which the second nea
neighbor can occur on the same side of the reference par
as the nearest neighbor. Such anomalies in the particle q
tities are expected because the origin is fixed in the cente
a reference particle, unlike the void quantities which are
eraged uniformly over all possible origins in the system.

FIG. 9. Particle probability functionEP(x;n) plotted vsn for
various window sizesx at volume fractionh50.5. The points rep-
resent the exact solution obtained from Eqs.~3.18! and~3.19!. The
lines are fits to the Gaussian formEP(x;n)5exp(A1Bn1Cn2),
whereA, B, andC are constants of the nonlinear regression.

FIG. 10. Particlenth nearest-neighbor distribution functio
HP(r ;n) for the hard-rod fluid at a volume fractionh50.5. Results
are obtained from Eqs.~2.26!, ~2.24!, ~3.18!, and~3.19!.
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It is worth noting that the starting point of our derivatio
was the one-sided particle probability distributio
EP

(1)(x;n). We could have just as well chosen as our start
point the one-sided nth nearest-neighbor distributio
HP

(1)(x;n), a quantity evaluated by Elkoshi, Reiss, and Ha
merich@32# for both constrained and unconstrained hard-r
systems. This quantity is related to the conventional pair c
relation via

rg~x!5(
i 51

`

HP
~1!~x; i !. ~3.20!

Although we studied the equilibrium hard-rod system
this work, the methods developed are quite general. In
they will carry over toanyone-dimensional system provide
that there are no second neighbor interactions and that
chord-length distributionp(h) can be characterized.

IV. CONCLUSIONS

In this paper we present analytical series representat
for the general probability functionsEV(r ;n) and EP(r ;n)
which describe density fluctuations in many-body system
Furthermore, we have developed equations for their cen
moments in terms of then-particle reduced density function
r1 ,r2 , . . . ,rn . The results concerning the particle quantiti
are new, to our knowledge. We have derived relationsh
for the void and particlenth nearest-neighbor distributio
functions HV(r ;n) and HP(r ;n), and then-particle condi-
tional pair distribution functionsGV(r ;n) and GP(r ;n). In
the case of the equilibrium hard-rod fluid, we solve for t
generalized version of the quantitiesEV , EP , HV , HP , GV ,
and GP exactly. We believe the results are the first of th
type for a hard-particle system. Furthermore, the meth
used to solve the hard-rod problem are quite general, and
be used to address other one-dimensional systems of i
acting particles. We are currently developing approximat
formulas for the nearest-neighbor quantities for systems
spheres in higher dimensions.

FIG. 11. Particlen-particle conditional pair distribution function
GP(r ;n) for the hard-rod fluid at a volume fractionh50.5. Results
are obtained from Eqs.~2.26!, ~2.24!, ~3.18!, and~3.19!.
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