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Test of nonequilibrium thermodynamics in glassy systems: The soft-sphere case
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The scaling properties of the soft-sphere potential allow the derivation of an exact expression for the
pressure of a frozen liquid, i.e., the pressure corresponding to configurations which are local minima in its
multidimensional potential energy landscape. The existence of such a relation offers the unique possibility for
testing the recently proposed extension of the liquid free energy to glassy out-of-equilibrium conditions and the
associated expression for the temperature of the configurational degrees of freedom. We demonstrate that the
nonequilibrium free energy provides an exact description of the soft-sphere pressure in glass states.
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The potential energy landscapREL) formalism[1] has The extension of the supercooled liquid free energy to the
provided a transparent formulation of the equilibrium freeout-of-equilibrium case has recently been propogj14—
energy of supercooled liquids based on the statistical propei8]. In the PEL formalism, out-of-equilibrium conditions are
ties of a system’s multidimensional potential energy surfacémplemented by imposing the constraint that the basin ex-
[1-8], i.e., in terms of the number, depth, and associatedplored by the system while aging does not coincide with the
phase-space volume of local potential energy mini@h  typical equilibrium one[17]. The proposed free energy is
This formalism, in which the PEL minima are termed inher- 9iven by
ent structureslS), is well suited for the description of super-
cooled liquids and glasses. While the liquid explores an ex- )
ponentially large number of distinct PEL basins, a glass

explores only a very sm.aII fraction of the_(?eif[hin an ex- The main distinction between this expression and the
perimentally accessible time fram@he equilibrium free en- o4 jijinrium case is that whil€;, is still evaluated at the
ergy for the whole system is written as sum of two contribu-thermostat temperatuf the configurational entropy term is
tions: an entrop|c'tern°r TS.ond Eis), which accounts for the weighted by an additional temperatufe, which may be
number of basins of depthEis, and the termEs  thought of as the temperature of tifeut-of-equilibrium
+F.in(T,Ejs), which describes the free energy of the systemconfigurational degrees of freedom. This is a consequence of
confined to an average basin of defly. Here, Son¢ iS  the fact that when the system is aging, only the fast degrees
associated with the energy degeneracy of mechanicallgf freedom (related to the vibrational contributions )
stable configurations and hence is termed the configurationgjuickly equilibrate to the bath temperature. The slow con-
entropy, whileF;, is associated with the “vibrational,” ki- figurational degrees of freedom are assumed to equilibrate
netic distortions of the system around these configurations/ia a sequence of quasiequilibrium steps. As a consequence,
Analogous expressions have been derived from alternativéhe configurational entropy is weighed by a temperature dif-
theoretical approach¢40—-13. ferent from the batfT.

In this paper, we first show that a PEL-based expression Note that the existence of two different temperatures con-
for the out-of-equilibrium thermodynamics of glassy systemdrolling the thermodynamics of an aging system modifies the
provides an expression for the thermodynamic pressure Glassical thermodynamlcs relations, and the new relations re-
inherent structures, that is, the pressure corresponding to tffit/Ce t0 the classical ones only when the system reaches equi-
ensemble of potential energy minima whose basins arbPrium and T, and T coincide. WhenTe and T differ, the
sampled at a given temperature and density. We then shosystem is in a nonequilibrium state. Whllg in ethbrlym the
that for a particular potential energy function corresponding’@/u€ 0fE;s is controlled only byT andV via the condition
to a system of soft spheres, one can verify that the mechanf (T:V)/9Eis=0, in this nonequilibrium setting the value
cal pressure calculated from the change of energy experPf Eis is also a function offe. In this case the basin depth
enced by an inherent structure configuration upon compress@mpled by the systenks(V,T,Tg), is the solution of
sion is exactly equivalent to the proposed thermodynamic
expression derived from out of equilibrium arguments. This 1 IF i _ ‘?Sconf:
equivalence of mechanical and thermodynamic treatments JEis €9Eis
for soft spheres provides support for the out-of-equilibrium
framework and suggests that the expression for IS pressure is This expression is based on the hypothesis that the out-
general to arbitrary systems. of-equilibrium system samples a distribution of basins simi-

F(V,T,Te)= —TeSconf V., Eis) T Eis+ Fuin(V, T,Es).
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lar to the one explored in equilibriufl4—17. Inverting a)

Es(V,T,To provides an estimate af, when the bath tem-

perature isT and the system is confined to a basin of depth =

E,s. As already discussgd 7], the expression foll, coin- AU }AE,s
cides with the experimentally determined fictive temperature - ==

[19] for models in whichdF;,/JdE =0, i.e., when the & M
phase-space volume of basins is independent of their depth.

b)
The same expression fdi, has been derived also by Franz =
and Virasord 16] in the context ofp-spin systems, once the
AU=AE,S{
T,

basin free energy is identified with the Thouless-Anderson-
Palmer free energj10].

Starting from the proposed free enelfdsqg. (1)] it is pos-
sible to calculate the thermodynamic pressure in out-of- FIG. 1. Results of a uniform scaling of particle coordinates for
equilibrium conditions, when the bath temperaturdiand  an inherent structure configuratiof@ the case for a generic poten-
the configurational temperatureTs (i.e., when the system is tial, for which the change in potential energy is not equal to the
exploring basins different from those explored in equilibriumchange in inherent structure energf,s; (b) the soft-sphere po-
at temperaturd). To this end, we evaluate the constdnt- tential, for whichAU=AE,s.
volume derivative of the free energy in Ed),

——

AL

temperature eliminates any contribution arising from the vi-
brational free energy and hend®g(V,Es) is

IF(V,T,Ty)
PV, T,Te)=— N 3
T aSconf
PlS(V;Els): P(V,O,Te):Te W . (7)
E
_ 9Scont dEis IScont °
=Tel9Es )\ ov ). Tl oy _ -
v TTe Eis Using the mathematical identity
_<5E|s) _(ﬂFvib) (3E|s)
Vv T, JEs TV v T, IScon __ IScont| [ IEis ®)
N | dEis |\ Vg
B ( aFvib) (4) IS conf
v '
TEis and theE g condition in Eq.(2) evaluated alT =0, we obtain
and rearranging 9Seont| [ Eis I
Ps(VED=—Td === | |5y =%y -
JEis |\ av NV
P(V T.T )_ ( 5E|S) T (ﬁsconf 1 (ﬁFvib) v Scont Scont 9
e AY T |l dEs/,, IEis) 1y ©)
S E which provides an alternative definition of the inherent struc-
AT J Conf) _((9 Vib) _ (5)  ture pressure.
v Es | 9V e Note that the mechanical definition &, that is the

measure of the energy change of the system under the com-
pression of an IS configuration, does not necessarily coincide
with Eq. (9) which is a derivative of the IS energy at constant
configurational entropy. Indeed, in general, on isotropically
compressing an IS configuration, the compressed state is not
Scont IFip a local minima of the potential energy surface and hence, the
IV T Tav ' ©) change in IS energy is only a fraction of the energy change
E TEs on compressiofisee Fig. 1a)]. We also note that the con-

figurational entropy of the system is not constant during the

The above expression, when evaluated at the bath tentompression, since the number of basins and their distribu-
peratureT=0 K, provides the theoretical expression for thetion in energy is function ofV. In other words, while the
pressure experienced in an inherent structée, Indeed, mechanical definition of pressure relates to the potential dif-
an infinite cooling rate quench =0 K brings the system ference due to a differential scaling of configurational coor-
to the local inherent structurgl,20]. In other words, the dinates, in general, the responsegqf due to an infinitesimal
steepest descent procedure used numerically to locate an imelume change does not correspond to such a continuous
herent structure is equivalent to the physical process of setonfigurational deformation, but instead to a differential
ting the bath temperature =0 K. The absolute zero bath change in the ensemble of minima considered.

The first term on the right-hand side of E§) is zero by the
E,s condition in Eq.(2). Thus,

d
P(V,T,Te)ITe(

IS
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We now show that, for the soft-sphere potential, the JEs
change in energy associated with compression of an IS con- Pis(V,Eig)=— (a—v : (10
figuration does coincide with the change of IS energy and Scont
that the configurational entropy does not change on compres-

sion, providing a consistency check for the derived expres-., . . I
. . - This expression, whose derivation has been based only on
sion for P,g and, more importantly, providing support for

Egs. (1) and (2). The soft-sphere potential has been exten-the self-similar nature of the soft-sphere potential, coincides

sively studied as a model for liquids and glasE@@1—29. with the general expression in E@) derived from the out-

. . of-equilibrium thermodynamic approach and provides a
The potential energi of a system composed &f particles S
interacting via a soft-sphere potential isE(rV) strong validation of the proposed Edg) and (2).

_sN flri—ri)" wh N_ ith To the extent that the out-of-equilibrium formalism is an
- ri],J>i=1€((jfT Fi rJf) » W l_ere rd_{rl(’jrz'fi ' 'r']r'\‘} Wi appropriate description of systems beyond soft spheres, the
i the coordinates of particle ande and o fix the energy o, ression for the inherent structure pressure given by Eq.
and length scales, respectively.

o ) 9) is quite general. Encouraging support for this statement is
The self-similar nature of the soft-sphere potential has th( )is g g ging supp

. X : ,%iven by the behavior of the inherent structure pressure be-
remarkable property that uniform scaling of particle coord|—|OW an ideal glass transitiof83]

nates does not produce changes the topology of the potential To summarize, the present paper provides support for the

; Ny —y\ — N
energy Iand_scape_, smcEa(_M )=\ ”E(-r ) .[30'311' In the recently proposed out-of-equilibrium approach to super-
PEL formalism this scaling property implies that the total o161 liguids and its corresponding definition of configura-

number of inherent structures and basins is invariant to volg - temperaturéi.e., the temperature characterizing a sys-
ume change$8,29-31. Th_e scaling ha_s _tWO important ad- tem’s sampling of inherent structures which are distinct from
ditional consequences which we exploit in the present study, )ce it would sample in equilibriuinin the context of the

| (i? An isot.r?pic compre_s;ion of a copfigur;lationl Whi(?h is a_soft-sphere system, this nonequilibrium formalism provides a
ocal potential energy minimum remains a local minimum; ¢ nistent expression for the inherent structure presure
the_ pptentlal_ energy change_ associated with the_compress'%rthermore, the results presented in this paper provide a
coincides with the change in tigs value[see Fig. )] tormal and general derivation d?,s [Eq. (9)] in terms of
Note that, in general, the isotropic compression of a loca tatistical properties of the landscaf#8,8 and open the

way for a consistent formulation of thermodynamic proper-

minimum configuration does not generate a new local mini-
mum configuration and hence the potential energy changgqg i gisordered materials based on a separation of configu-
rational and vibrational properties.

does not coincides with the change of &g energy[32].
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