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Test of nonequilibrium thermodynamics in glassy systems: The soft-sphere case
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The scaling properties of the soft-sphere potential allow the derivation of an exact expression for the
pressure of a frozen liquid, i.e., the pressure corresponding to configurations which are local minima in its
multidimensional potential energy landscape. The existence of such a relation offers the unique possibility for
testing the recently proposed extension of the liquid free energy to glassy out-of-equilibrium conditions and the
associated expression for the temperature of the configurational degrees of freedom. We demonstrate that the
nonequilibrium free energy provides an exact description of the soft-sphere pressure in glass states.
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The potential energy landscape~PEL! formalism @1# has
provided a transparent formulation of the equilibrium fr
energy of supercooled liquids based on the statistical pro
ties of a system’s multidimensional potential energy surf
@1–8#, i.e., in terms of the number, depth, and associa
phase-space volume of local potential energy minima@9#.
This formalism, in which the PEL minima are termed inhe
ent structures~IS!, is well suited for the description of supe
cooled liquids and glasses. While the liquid explores an
ponentially large number of distinct PEL basins, a gla
explores only a very small fraction of these~within an ex-
perimentally accessible time frame.! The equilibrium free en-
ergy for the whole system is written as sum of two contrib
tions: an entropic term2TSconf(EIS), which accounts for the
number of basins of depthEIS , and the term EIS

1Fvib(T,EIS), which describes the free energy of the syst
confined to an average basin of depthEIS . Here, Sconf is
associated with the energy degeneracy of mechanic
stable configurations and hence is termed the configurati
entropy, whileFvib is associated with the ‘‘vibrational,’’ ki-
netic distortions of the system around these configuratio
Analogous expressions have been derived from alterna
theoretical approaches@10–13#.

In this paper, we first show that a PEL-based express
for the out-of-equilibrium thermodynamics of glassy syste
provides an expression for the thermodynamic pressur
inherent structures, that is, the pressure corresponding to
ensemble of potential energy minima whose basins
sampled at a given temperature and density. We then s
that for a particular potential energy function correspond
to a system of soft spheres, one can verify that the mech
cal pressure calculated from the change of energy exp
enced by an inherent structure configuration upon comp
sion is exactly equivalent to the proposed thermodyna
expression derived from out of equilibrium arguments. T
equivalence of mechanical and thermodynamic treatm
for soft spheres provides support for the out-of-equilibriu
framework and suggests that the expression for IS pressu
general to arbitrary systems.
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The extension of the supercooled liquid free energy to
out-of-equilibrium case has recently been proposed@12,14–
18#. In the PEL formalism, out-of-equilibrium conditions ar
implemented by imposing the constraint that the basin
plored by the system while aging does not coincide with
typical equilibrium one@17#. The proposed free energy i
given by

F~V,T,Te!52TeSconf~V,EIS!1EIS1Fvib~V,T,EIS!.
~1!

The main distinction between this expression and
equilibrium case is that whileFvib is still evaluated at the
thermostat temperatureT, the configurational entropy term i
weighted by an additional temperatureTe, which may be
thought of as the temperature of the~out-of-equilibrium!
configurational degrees of freedom. This is a consequenc
the fact that when the system is aging, only the fast degr
of freedom ~related to the vibrational contributions toF)
quickly equilibrate to the bath temperature. The slow co
figurational degrees of freedom are assumed to equilib
via a sequence of quasiequilibrium steps. As a conseque
the configurational entropy is weighed by a temperature
ferent from the bathT.

Note that the existence of two different temperatures c
trolling the thermodynamics of an aging system modifies
classical thermodynamics relations, and the new relations
duce to the classical ones only when the system reaches
librium and Te and T coincide. WhenTe and T differ, the
system is in a nonequilibrium state. While in equilibrium th
value ofEIS is controlled only byT andV via the condition
]F(T,V)/]EIS50, in this nonequilibrium setting the valu
of EIS is also a function ofTe. In this case the basin dept
sampled by the system,EIS(V,T,Te), is the solution of

11
]Fvib

]EIS
2Te

]Sconf

]EIS
50. ~2!

This expression is based on the hypothesis that the
of-equilibrium system samples a distribution of basins sim
©2003 The American Physical Society03-1
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lar to the one explored in equilibrium@14–17#. Inverting
EIS(V,T,Te) provides an estimate ofTe when the bath tem-
perature isT and the system is confined to a basin of de
EIS . As already discussed@17#, the expression forTe coin-
cides with the experimentally determined fictive temperat
@19# for models in which]Fvib /]EIS50, i.e., when the
phase-space volume of basins is independent of their de
The same expression forTe has been derived also by Fran
and Virasoro@16# in the context ofp-spin systems, once th
basin free energy is identified with the Thouless-Anders
Palmer free energy@10#.

Starting from the proposed free energy@Eq. ~1!# it is pos-
sible to calculate the thermodynamic pressure in out
equilibrium conditions, when the bath temperature isT and
the configurational temperature isTe ~i.e., when the system is
exploring basins different from those explored in equilibriu
at temperatureT). To this end, we evaluate the constantT
volume derivative of the free energy in Eq.~1!,

P~V,T,Te!52S ]F~V,T,Te!

]V D
T,Te

~3!

5TeF S ]Sconf

]EIS
D

V
S ]EIS

]V D
T,Te

1S ]Sconf

]V D
EIS

G
2S ]EIS

]V D
T,Te

2S ]Fvib

]EIS
D

T,V
S ]EIS

]V D
T,Te

2S ]Fvib

]V D
T,EIS

, ~4!

and rearranging

P~V,T,Te!5S ]EIS

]V D
T,Te

FTeS ]Sconf

]EIS
D

V

212S ]Fvib

]EIS
D

T,V
G

1TeS ]Sconf

]V D
EIS

2S ]Fvib

]V D
T,EIS

. ~5!

The first term on the right-hand side of Eq.~5! is zero by the
EIS condition in Eq.~2!. Thus,

P~V,T,Te!5TeS ]Sconf

]V D
EIS

2S ]Fvib

]V D
T,EIS

. ~6!

The above expression, when evaluated at the bath t
peratureT50 K, provides the theoretical expression for t
pressure experienced in an inherent structure,PIS . Indeed,
an infinite cooling rate quench toT50 K brings the system
to the local inherent structure@1,20#. In other words, the
steepest descent procedure used numerically to locate a
herent structure is equivalent to the physical process of
ting the bath temperature toT50 K. The absolute zero bat
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temperature eliminates any contribution arising from the
brational free energy and hence,PIS(V,EIS) is

PIS~V,EIS!5P~V,0,Te!5TeS ]Sconf

]V D
EIS

. ~7!

Using the mathematical identity

S ]Sconf

]V D
EIS

52S ]Sconf

]EIS
D

V
S ]EIS

]V D
Sconf

, ~8!

and theEIS condition in Eq.~2! evaluated atT50, we obtain

PIS~V,EIS!52TeS ]Sconf

]EIS
D

V
S ]EIS

]V D
Sconf

52S ]EIS

]V D
Sconf

,

~9!

which provides an alternative definition of the inherent stru
ture pressure.

Note that the mechanical definition ofPIS , that is the
measure of the energy change of the system under the c
pression of an IS configuration, does not necessarily coinc
with Eq. ~9! which is a derivative of the IS energy at consta
configurational entropy. Indeed, in general, on isotropica
compressing an IS configuration, the compressed state is
a local minima of the potential energy surface and hence,
change in IS energy is only a fraction of the energy chan
on compression@see Fig. 1~a!#. We also note that the con
figurational entropy of the system is not constant during
compression, since the number of basins and their distr
tion in energy is function ofV. In other words, while the
mechanical definition of pressure relates to the potential
ference due to a differential scaling of configurational co
dinates, in general, the response ofEIS due to an infinitesimal
volume change does not correspond to such a continu
configurational deformation, but instead to a different
change in the ensemble of minima considered.

FIG. 1. Results of a uniform scaling of particle coordinates
an inherent structure configuration:~a! the case for a generic poten
tial, for which the change in potential energyDU is not equal to the
change in inherent structure energyDEIS ; ~b! the soft-sphere po-
tential, for whichDU5DEIS .
3-2
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We now show that, for the soft-sphere potential, t
change in energy associated with compression of an IS
figuration does coincide with the change of IS energy a
that the configurational entropy does not change on comp
sion, providing a consistency check for the derived expr
sion for PIS and, more importantly, providing support fo
Eqs. ~1! and ~2!. The soft-sphere potential has been exte
sively studied as a model for liquids and glasses@8,21–29#.
The potential energyE of a system composed ofN particles
interacting via a soft-sphere potential isE(rN)
5( i , j . i 51

N e(s/ur i2r j u)n, where rN5$r1 ,r2 , . . . ,rN% with
r i the coordinates of particlei, and e and s fix the energy
and length scales, respectively.

The self-similar nature of the soft-sphere potential has
remarkable property that uniform scaling of particle coor
nates does not produce changes the topology of the pote
energy landscape, sinceE(lrN)5l2nE(rN) @30,31#. In the
PEL formalism this scaling property implies that the to
number of inherent structures and basins is invariant to
ume changes@8,29–31#. The scaling has two important ad
ditional consequences which we exploit in the present stu

~i! An isotropic compression of a configuration which is
local potential energy minimum remains a local minimu
the potential energy change associated with the compres
coincides with the change in theEIS value @see Fig. 1~b!#.
Note that, in general, the isotropic compression of a lo
minimum configuration does not generate a new local m
mum configuration and hence the potential energy cha
does not coincides with the change of theEIS energy@32#.

~ii ! An isotropic compression moves the soft-sphere s
tem along a path of constant configurational entropy~since
the number of basins of depthEIS at volumeV is identical to
the number of basins of depthEIS1dEIS at volume V
1dV). Because, from a mechanical point of view,PIS is the
measure of the change of system’s energy under a comp
sion of anIS configuration, these two considerations allo
us to writePIS as the volume derivative of the inherent stru
ture energy along a constant configurational entropy pat
.P
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PIS~V,EIS!52S ]EIS

]V D
Sconf

. ~10!

This expression, whose derivation has been based only
the self-similar nature of the soft-sphere potential, coincid
with the general expression in Eq.~9! derived from the out-
of-equilibrium thermodynamic approach and provides
strong validation of the proposed Eqs.~1! and ~2!.

To the extent that the out-of-equilibrium formalism is a
appropriate description of systems beyond soft spheres,
expression for the inherent structure pressure given by
~9! is quite general. Encouraging support for this statemen
given by the behavior of the inherent structure pressure
low an ideal glass transition@33#.

To summarize, the present paper provides support for
recently proposed out-of-equilibrium approach to sup
cooled liquids and its corresponding definition of configu
tional temperature~i.e., the temperature characterizing a sy
tem’s sampling of inherent structures which are distinct fro
those it would sample in equilibrium.! In the context of the
soft-sphere system, this nonequilibrium formalism provide
consistent expression for the inherent structure pressurePIS .
Furthermore, the results presented in this paper provid
formal and general derivation ofPIS @Eq. ~9!# in terms of
statistical properties of the landscape@18,8# and open the
way for a consistent formulation of thermodynamic prop
ties in disordered materials based on a separation of con
rational and vibrational properties.
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