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The influence of elongation, quadrupole strength, temperature, and number density upon the
pressure, energy, translational diffusion, rotational relaxation, and shear viscosity of linear,
rigid, three-site, heteronuclear, shifted-force Lennard-Jonesiums (RTSLJ) was studied via
(N,V,T) molecular dynamics. For quadrupolar systems, molecular elongation was
systematically perturbed about a base case, with quadrupole strengths scaling as the square of
the elongation. The same elongation perturbations were applied to otherwise identical,
nonquadrupolar systems. At constant density, the configurational energy increases in
magnitude with elongation for the quadrupolar systems, and decreases in the nonquadrupolar
case. The pressure exhibits a maximum at intermediate elongation in the presence of
quadrupolar interactions, and increases monotonically with elongation at constant density for
nonquadrupolar systems. Center-of-mass mobility decreases due to the presence of
quadrupolar interactions, which also tend to slow down rotational relaxation rates.

INTRODUCTION

The quantitative prediction of fluid properties from
knowledge of the molecular architecture of the constituent
species remains a challenging problem. Molecular dynamics
(MD) is a valuable tool for the investigation of both equilib-
rium and time-dependent behavior in model fluids. It is a
distinguishing feature of this method that it provides essen-
tially exact answers to idealized problems. The nature of the
idealization lies in the representation of molecular architec-
ture and intermolecular potentials; the latter, in particular,
are, at best, plausible approximations to physical reality. The
usefulness of MD, therefore, it not as a predictive technique.
Rather, it allows the rigorous testing of theories (when they
exist), it provides exact results on well-defined models
which might stimulate the development of theories, and,
more importantly in the present context, it enables the sys-
tematic investigation of the relationship between bulk prop-
erties and molecular architecture in model systems.

In nature, chemical species differ from each other in a
great variety of ways, which include mass, mass distribution,
shape, electrical charge distribution, bond angles and flexi-
bility, etc. Bulk behavior, therefore, is the result of the com-
plicated interaction among the above factors. A fundamen-
tal understanding of complex phenomena is usually based
upon a clear knowledge of simplified, idealized problems, in
which the underlying causes act separately. This can be done
most effectively in molecular-based simulations, where the
architecture and interaction laws which define the model
under study can be selectively perturbed, and the results of
such perturbations measured exactly. Such is the approach
underlying the present work.

Recent examples of the application of MD to investigate
the relationship between transport in dense fluids and the
underlying details of molecular architecture include the
work of Brown and Clarke,! who studied the effect of mass
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distribution on mass and momentum transport in rigid non-
linear triatomic molecules, and that of Hoheisel,> who com-
pared the translational diffusivities of planar (benzene-like)
and “globular” (SFg-like) model systems. Here, we focus
our attention on triatomic molecular fluids composed of lin-
ear molecules with a net quadrupole moment. The model
used in this work is a rigid, three-site heteronuclear Len-
nard-Jonesium with point quadrupole (RTSLJQ), a plausi-
ble idealization of CQ,. Carbon dioxide differs from other
linear molecular fluids in that it possesses a very large quad-
rupole (more than three times greater than that of N, 3).
Electrostatic interactions play a correspondingly more im-
portant role in both the equilibrium and time-dependent
properties of solid and dense fluid CO, than they do in, say,
N,.4

Previous work on the time-dependent behavior of linear
model systems in the spirit of this investigation (i.e., system-
atic perturbations of molecular elongation and/or quadru-
pole moment) has focused on homonuclear diatomic fluids,
and includes the work of Steele and Streett’ on translational
and rotational motion in quadrupolar diatomics, and that of
Singer ef al.® on the translational and rotational autocorrela-
tion functions of two-site Lennard-Jonesiums. Kabadi and
Steele’ have studied the temperature dependence of rota-
tional and translational dynamics of quadrupolar diatomic
Lennard-Jonesiums, at a fixed value of density and elonga-
tion. Several aspects of the equilibrium behavior of Lennard-
Jonesiums with quadrupolar interactions have been studied
via computer simulations.®*'! The work of English and Ven-
ables, !? on the other hand, is an important example of the use
of systematic perturbations in elongation and quadrupole
strength as a method for the investigation of solid state prop-
erties. These authors studied the effects of said variables
upon the stability of crystal structures of homonuclear di-
atomic molecular solids modeled via two-center Lennard-
Jonesiums with point quadrupolar interactions.

In their important study of homonuclear Cl, and Br,-
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like diatomics, Steele and Streett’ studied four different sys-
tems: a purely repulsive diatomic in which the Lennard-
Jones potential was shifted by a value equal to the well depth
and truncated past a separation corresponding to the loca-
tion of the well depth, a nonquadrupolar diatomic, and two
different quadrupolar diatomics in which the reduced quad-
rupole moment was varied by a factor of /2. These authors
investigated both thermodynamic (energy, pressure) and
time-dependent (translational and rotational motion) be-
havior. They considered only perturbations in the quadru-
pole at fixed elongation, and at a single state point. Density,
temperature, and elongation effects were not considered.

In this paper, we investigate the effects of quadrupole
moment, elongation, number density, and temperature upon
equilibrium (pressure, energy) and time-dependent (rota-
tional and translational diffusion, shear viscosity) properties
of linear heteronuclear triatomic fluids.

SYSTEMS AND STATE CONDITIONS

The systems studied in this work are described in Table
I. The notation s, m, I, denotes short, medium, and long
molecule; QQ and no QQ refer to the presence or absence of
quadrupolar interactions, respectively. Rigid, three-site, lin-
ear, heteronuclear Lennard-Jonesiums were considered in
all cases, with a carbon-like site at the center and two sym-
metric oxygen-like sites at the extremes. Size and energy pa-
rameters for the site—site interactions are identical to those
used by Murthy ef al.* (model C), in their study of interac-
tion site models for carbon dioxide. The intermediate elon-
gation (m) is also identical to that used by Murthy ez al.*
(model C). Molecular elongations were perturbed by a fac-
tor of /2 about the intermediate value, with simulations
therefore spanning a factor of 2 in this variable.

Electrostatic interactions were modeled via a point qua-
drupole potential’® (see Appendix for technical details per-
taining to all simulations ). The reduced quadrupole strength
@ * used with the medium elongation (m), corresponds to a
quadrupole moment of — 1.284 X 1073 C m?, again identi-
cal to that used by Murthy ez al.* Thus, the medium mole-

TABLE 1. Summary of systems investigated in this work,

1 * Q *a
System (doo/0cc) Q'/(0%cEcc)??
5,10 QQ 0.589 0
m, no Q0 0.833 0
1 n0 QQ 1178 0
5, 00 0.589 —2.35
m, 00 0.833 —470
1,00 1.178 —9.40
Site-site LJ potential parameters
Ooc =2.7854 Ooo =3014 4 20c0 = (Opo + Occ)
€cc/k=29K €o/k=831 K €co = (€go€ec)'?
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cule has an oxygen—oxygen separation of 2.32 A (the gas-
phase value* for CO,), and a quadrupole moment which is
89% of the measured value® for CO,. Quadrupole strengths
were perturbed by a factor of 2 in each direction about the
intermediate value (m): this corresponds to a change in
elongation by a factor of v/2 (see above) at constant effec-
tive charges at the oxygen-like sites. Consequently, the oxy-
gen—oxygen separation for the long molecule is 41.4%
greater than in gaseous CO,, and its quadrupole moment,
79% higher.

State conditions investigated in this work are sumarized
in Table II. The intermediate density is very close to CO,’s
critical density (p¥* = 0.1384) % simulations span a factor of
10 in density. The high density corresponds to liquid CO, at
its triple point. The low temperature is 3.4 K higher than
CO,’s triple point, while the high temperature is 30 K above
its critical point. All simulations were performed in the
(N, V,T) ensemble (see Appendix for technical details). In
this work, we use a reduced density based on o (neither
Occ NOY 0, were perturbed during the simulations). A
nondimensionalization based on the molecular volume'?
would result instead in an elongation-dependent volume
fraction. Since we are interested in investigating the effects of
given elongation perturbations at constant number density,
the former approach (i.e., scaling density with a Lennard-
Jones o) was adopted, as in the work of Kabadi and Steele.”

As discussed in the Introduction, our goal is to under-
stand the influence of geometry and charge distribution
upon the properties of linear heteronuclear triatomic fluids
and not to model the behavior of CO, by fitting intermolecu-
lar potential parameters. Nevertheless, in the Appendix, we
compare calculated properties for the CO,-like system
(m,QQ) with experimental results for CO,.

THERMODYNAMIC PROPERTIES

Table III lists the calculated pressure, configurational
energy, translational diffusion coefficients, and shear viscos-
ities, together with the corresponding systems and state con-
ditions, as per Tables I and II. All systems exhibited fluid
behavior: no plateaus in mean squared displacement were
detected. In the case of the long molecule with quadrupolar
interactions at low temperature (/,QQ,7* = 7.586), the re-
duced mobility suggests proximity to a freezing transition.
Even in this case, though, the diffusion coefficient is several
orders of magnitude higher than solid-phase diffusivities.

The density and elongation dependence of the configu-
rational energy is shown in Figs. 1 and 2, where the tempera-

TABLE II. State conditions investigated in this work.

#a T*?
(PU%:C ) (kT /€ce)
0.0347 11.517
0.1381 11.517
0.348 11.517
0.348 7.586

2 Q(C m?) = 2.732X 1040,
bQ' = Q(4rey) "% €, = 8.8542 X 1072 CE N~ m~2

*p (mol/m®) = 7.69X 10° p*.
PT(K) = 29T*.
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TABLE III. Calculated thermodynamic and transport properties.”

pt T* U*® P D',‘ d 1?. e
(poic) (kT /exc) System (U/Neee) (Polc/€cc) [Dt\‘mCO_./(UCCJE—C:;)] [ﬂaﬁ:c/\'mcozfcc]
0.0347 11.517 s, no QQ —4.46 4001 0.343 4 0.005 12.25 1.9
0.0347 11.517 m, no QQ —3.70 + 0.01 0.367 + 0.005 11.29 1.7
0.0347 1L517 1, no QQ - 3.14 4+ 0.01 0.402 4 0.006 9.21 2.5
0.0347 11.517 s, QQ —4.48 +0.01 0.339 + 0.005 10.83 0.9
0.0347 11.517 m, QQ — 473 +0.01 0.352 + 0.005 9.89 1.0
0.0347 11.517 1, QQ —76.1+0.1 0.050 4+ 0.001 3.25 0.7
0.1381 11.517 s, no QQ —15.64 4+ 0.02 0.96 + 0.01 2.79 35
0.1381 11.517 m, no Q0 —13.42 +0.02 1.38 + 0.02 2.54 43
0.1381 11.517 I, no QQ —12.19 4002 2.15+003 1.83 4.0
0.1381 11.517 s, Q0 — 16.50 + 0.02 0.89 + 0.01 2,55 1.9
0.1381 11.517 m, 0Q — 1751 4+0.03 1.14 +0.01 2.43 1.6
0.1381 11.517 1, QQ —970+0.1 - 0.260 4- 0.004 0.44 1.6
0.348 11.517 5, no Q0 —37.26 +0.06 5.74 4+ 0.08 0.89 9.3
0.348 11.517 m, no QQ — 33.87 4+ 0.05 169+ 0.2 0.51 9.9
0.348 11517 1, no QQ —27.40 +0.04 40.1 405 0.37 8.3
0.348 11.517 s, QQ —37.91 4+ 0.06 5.66 + 0.08 0.62 34
0.348 11.517 m, QQ —43.60 + 0.06 13.0+02 0.39 4.6
0.348 11.517 1, QQ —1282+02 3.734+0.05 0.07 4.1
0.348 7.586 5, n0 QQ —40.004+0.06 —0.88 +0.01 0.55
0.348 7.586 m, no Q0 - 37.40 4 0.05 73+0.1 0.33
0.348 7.586 1, no QQ —33.104+005 263+ 04 0.22
0.348 7.586 s, 00 —41.05 +0.06 —0.98 4-0.01 0.41
0.348 7.586 m, 00 —49.64 007 2774 0.04 0.19
0.348 7.586 I, 00 — 14413102  —5.801 0.08 0.01

#See Table 1V for rotational motion.
b U(J/mol) =241.12U*.
¢ P(bar) = 18542 P*.

4D, (em?/s) = 2.0616 X 10~* D*; estimated accuracy (see the Appendix): + 6%.
<97 (cp) = 6.976 X 1072 77*: estimated accuracy {see the Appendix): + 13%.

ture was kept at T* = 11.517. We note (Fig. 1) that the

magnitude of the configurational energy increases in almost
linear fashion with density for a given elongation and qua-

Note that the quadrupolar energy is quadratic in qua-
drupole strength and hence, in this study, quartic in elonga-
tion. Hence the high negative U * values reported in Table 111

drupole moment. for the (/,QQ) case. The ratio U(/,QQ)/U(s5,QQ) is 17 at
[+
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low density, and smaller thereafter. The corresponding ratio
of fourth powers of elongations is 16.

It can be seen from Fig. 2 that the presence of quadrupo-
lar interactions gives rise to behavior which differs from its
quadrupole-free counterpart in qualitative as well as quanti-
tative ways. Thus, whereas the magnitude of the configura-
tional energy decreases linearly with elongation at constant
density in the absence of quadrupolar interactions, the same
quantity grows in nonlinear fashion as the elongation is in-
creased at constant density in the presence of quadrupolar
interactions. This important thermodynamic feature cannot
be obtained by adjusting the values of the site Lennard-Jones
parameters, and would be lost completely in the absence of
quadrupolar interactions.

Figure 3 shows the density dependence of the pressure,

50

with elongation and quadrupole moment as parameters, at
T* = 11.517. The pressure increases with elongation at con-
stant density in the absence of quadrupole—quadrupole inter-
actions, but decreases upon addition of a quadrupole mo-
ment at constant density and elongation (Table III), the
latter trend having been previously reported by Steele and
Streett® in their study of homonuclear, quadrupolar diatom-
ics. The pressure extremun at intermediate elongation for
quadrupolar systems at low, medium, and high density (Ta-
ble I11) is therefore the result of these opposing effects.
Differences between the thermodynamic behavior of
linear molecular fluids with and without quadrupolar inter-
actions, therefore, are not merely quantitative, but qualita-
tive. The magnitude of the configurational energy decreases
with elongation at constant density for a nonquadrupolar

PRESSURE

FIG. 3. Dependence of pressure (P*)
upon density (p*) for nonquadrupolar
(—) and quadrupolar (-'-) systems.

m T*=11.517. 5, m, and ! denote the
small, medium, and long molecule, re-
m spectively.
8.8
I
=10 T T T T T T T
o] 0.1 0.2 0.3 0.4

DENSITY
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system, but increases with elongation for a quadrupolar sys-
tem. Similarly, at constant density, the pressure increases
with elongation in a nonquadrupolar system, but exhibits a
maximum at intermediate elongation in the quadrupolar
case.

TIME-DEPENDENT BEHAVIOR

Translational motion

Table III includes the calculated diffusion coefficients,
together with the corresponding systems and state condi-
tions, as per Tables I and II. Diffusivities were computed
from time-and-ensemble-averaged mean squared center-of-
mass displacement vs time curves (see Appendix for techni-
cal details). The data corresponding to 7'* = 11.517 are
plotted in Fig. 4, with elongation as independent variable
and density and quadrupole as parameters.

In the absence of quadrupolar interactions, the ratio of
diffusion coefficients of the medium molecule to those of the
long molecule equals 138 (p*=0.348), 1.39
(p* =0.1381),and 1.23 (p* = 0.0347), while the length ra-
tio (/ /m) is 1.414. The approximate agreement between ra-
tios of diffusivities and length at high and intermediate den-
sities is indicative of hydrodynamic (Stokes—Einstein)
behavior, with the ‘“hydrodynamic size” of the molecules
scaling as their only characteristic dimension (i.e., their
length). The corresponding ratios for the short and medium
molecules (s/m) are 1.75 (p* = 0.348), 1.1 (p* = 0.1381),
and 1.09 (p* = 0.0347). Thus, we see breakdown of hydro-
dynamic behavior even at liquid-like densities for the short
molecule. Analogous calculations for the case of quadrupo-
lar interactions are meaningless in this study, since elonga-
tion and quadrupole moment are not independent.

Quadrupolar attractions tend to decrease translational
mobility (Table III, Fig. 4). This agrees with the observa-
tions of Steele and Streett’ for diatomic Lennard-Jonesiums

Chialvo, Heath, and Debenedstti: Heteronuciear triatomic fluids

at fixed elongation, temperature, and density. The present
study shows that this effect becomes more pronounced at
high density and elongation, as can be seen from calculating
the ratios of nonquadrupolar to quadrupolar diffusivities for
the short, medium, and long molecules.

Density effects are summarized in Fig. 5, where the data
of Fig. 4 has been replotted, with elongation (and quadru-
pole) as parameters, and density as independent variable.
Upon increasing the bulk density, there is a pronounced de-
crease in the overall range of diffusivities spanned as a result
of changes in elongation and quadrupolar strength [i.e., D(s,
no QQ) — D(/,QQ)]. Note, however, that the correspond-
ing ratio [i.e., D(s, no QQ)/D(1,QQ)] actually increases,
from 3.77 (p* = 0.0347) to 12.71 (p* = 0.348).

Rotational motion

Rotational motion can be conveniently analyzed within
the framework of Debye’s theory of angular relaxation.' In
this approach, one assumes the existence of a time At large
enough so that successive angular displacements are uncor-
related, yet small enough so that, during this interval, only
small displacements occur.'® This being so, one can write a
diffusion equation for the probability distribution function
of molecular orientations /'8, This quantity is defined in
such a way that the differential probability dw of finding a
molecule with an orientation within d6 of 8, and within d¢ of
&, is given by dw = fd¢ sin 6 dO, where (0,¢) are the polar
and azimuthal angles of a molecule’s orientation vector with
respect to a laboratory frame. Since we are interested in dis-
placements with respect to an initial orientation, and not
with respect to a laboratory frame, we seek a solution to the
diffusion equation for f, subject to the initial condition
27f(6,4,0) = 6(cos 6 — 1), where now

cos 8(¢) =1(2)-1(0) (n
with |, the unit vector coaxial with the linear molecule. The

13
12 ] ¢ u\
z
& 11 5 b oA
[3] .
E 10 4 ~a
8 9 a:p¥= 0.0347 . o
(3 « \
z 8 4 by 0.0347 )
5 pr= 003 ~\
a 7 c*= 0.1381 \ FIG. 4. Dependence of translational dif-
; 6 dz P" P : fusion coefficients (DY) upon molecu-
(=] . lar elongation (dop/0cc) for nonqua-
< 5 ozp‘z 0.3480 \ drupolar (—) and quadrupolar (—--)
5 - : systems. 7* = 11.517.
: 4 #:0%= 0.3480 \
7] 3 ¢ § A
z @ BT
5 2 - T—
= .
14 M ™~
T ‘
f 8 —_— \)v‘
o T | T T T v v L)
0.4 0.6 0.8 1 1.2 1.4
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™= 11.517

TRANSLATIONAL DIFFUSION COEFFICIENT

FIG. 5. Dependence of translational dif-
fusion coefficients (D*) upon density
(p*) for nonquadrupolar (—) and qua-
drupolar (—--) systems. T* = 11.517.s,
m, and / denote the small, medium, and
long molecule, respectively.

DENSITY

solution to the diffusion equation subject to the pulse initial
condition reads'”'®

60 = 5 (ZELVP, [oos 00 Texpl — 1+ 11D,
j=0
(2)
where P;(x) is the jth order Legendre polynomial
[Py(x) =1; Py(x) =x; P,(x) = 1.5x*> — 0.5}, and Dy is
the rotational diffusion coefficient. Equation (2) and the
normalization condition {dw = 1 imply

{cos 8(2)) = exp( — 2Dg1), (3)
(1.5 cos? 8(t) — 0.5) = exp( — 6Dg1). 4)

In addition, for t> (10D ) !, we can neglect all but the
leading terms in the expression for /(6,£)!" [i.e., Eq. (2)],
and we can write

(02(t))g——ﬂ—2—:j _ exp( — 2Dgt) +%)exp( —6Dg1),

2 8
&)

where

27 T
(A(0.4.) = f d¢f d0sin 0£(0,4,) ABb).  (6)
(¢] 0

According to the Debye theory, then, {(P,(cos 8)) and
(P,(cos 8)) decay exponentially, with relaxation times 7,
and 7, satisfying

71=(2Dg) ™! (7)
7= (6Dg) ™" (8)

Since the physical picture upon which the theory is based is
that of noninteracting particles undergoing small and ran-
dom (Brownian) rotations between collisions,'® it is not a
priorievident that the systems under study here obey Eq. (3)
or (4), especially at low density. Thus, we are interested in
investigating the effects of density, quadrupolar interac-
tions, and elongation upon the validity of the Debye theory

0.3 0.4

for the quantification of rotational motion in molecular
fluids composed of small linear molecules, such as carbon
dioxide.

Calculated rotational relaxation times and diffusion co-
efficients are listed in Table IV. Relaxation times were ob-
tained from the condition

(P, [cos B(r )= —1 (j=12). 9

Note that Eq. (9) is an objective measure of rotational relax-
ation, irrespective of whether the decay of the first two Le-
gendre polynomials is indeed exponential (as demanded by
Debye’s theory) or not. If the hypotheses underlying De-
bye’s theory are valid, one must have 7,/7, = 3, and the re-
laxation times are true properties of the system. If the decay
of the Legendre polynomials is not exponential, on the other
hand, 7, and 7, are qualitative indicators of rotational relax-
ation but are not, strictly speaking, properties. Rotational
diffusion coefficients were obtained from the decay of the
Legendre polynomials

_1d

R1 '—"“_t —In(P[cos B(1) 1)}, (10)
1d
Dy, =z—; — In{P,[cos 8(£)1)}. (1)

If the hypotheses underlying Debye’s theory are valid, one
must have linear behaviorand D, = Dy, = Dg.Ensemble
averages in Egs. (9)—-(11) were computed by averaging over
all molecules, and over initial times (see Appendix for de-
tails).

In calculating rotational diffusion coefficients via Egs.
(10) and (11), care must be exercised to allow the system to
relax beyond the initial regime during which the Legendre
polynomials decay nonexponentially.>'® For homonuclear,
quadrupolar, Lennard-Jones diatomics, this initial relaxa-
tion time is of the order of 0.3 ps® (or 0.08 dimensionless time
units; see Table IV). At long times, on the other hand, the
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TABLE 1V. Calculated rotational relaxation times and diffusion coefficients.

Chialvo, Heath, and Debenedetti: Heteronuclear triatomic fluids

p' T‘ 7-Ilb Dt cde D. cd,e
(potc)  (KT/ecc)  System [ Ve ] [ ol ] /13 "'”““'"m] [D“”“"m“’ D3,/D%,
(UCC\/’"CO, ) (Occ \/ Mmeo,)

0.0347 11.517 s, no QQ 0.069 0.042 1.643

0.0347 11.517 m, no Q0 0.099 0.059 1.678

0.0347 11.517 I/, no QQ 0.145 0.087 1.667

0.0347 11.517 s, QQ 0.065 0.040 1.625

0.0347 11.517 m, Q0 0.095 0.056 1.696 e e e
0.0347 11.517 1, 00 1.140 0.450 2.533 0.86 0.69 1.25
0.1381 11.517 s, no Q0 0.068 0.041 1.659

0.1381 11.517 m, no Q0 0.115 0.064 1.797

0.1381 11.517 I, no QQ 0.174 0.096 1.813

0.1381 11.517 s, 00 0.073 0.056 1.304
0.1381 11.517 m, OQ 0.124 0.067 1.851 5.54 311 1.78
0.1381 11.517 I, Q0 1.330 0.388 3.428 0.33 0.33 1.00
0.348 11.517 s, no QQ 0.092 0.046 2.000 6.78 4.68 1.45
0.348 11.517 m, no QQ 0.250 0.093 2.688 2.16 1.74 1.24
0.348 11.517 1, no QQ 0.827 0.272 3.040 0.60 0. 57 1.05
0.348 11.517 s, Q0 0.094 0.047 2.000 6.80

0.348 11.517 m, QQ 0.294 0.105 2.800 1.82 1.35 1. 35
0.348 11.517 1, 00 9.240 2.780 3.324 0.046 0.044 1.05
0.348 7.586 s, no QQ 0.145 0.062 2.339 3.48 3.72 0.94
0.348 7.586 m, no QQ 0.334 0.122 2.738 1.56 1.50 1.04
0.348 7.586 1, no QQ 1.444 0.452 3.195 0.33 0.30 1.10
0.348 7.586 s, 00 0.145 0.063 2.302 4.63 3.08 1.50
0.348 7.586 m, Q0 0.530 0.180 2.944 0.84 0.97 0.87
0.348 7.586 1, 00 >13 10.400 0.026 0.023 1.13

*7(ps) = 3.762 *.
® Calculated from the condition In{P; [cos (7;)]) =
Do (ps~') = 2.658x 10~ D*

4 Calculated from the short time limit of the — In{P; [cos 8] }vs t curve; A, Dg; = (d /dt){ —

©Only values for which the correlation coefficient exceeds 0.96 are reported.

Legendre polynomials can develop plateaus. '® For nondilute
solutions of rod-like polymers, these plateaus have been ex-
plained (in terms of Doi—Edwards theory) as a consequence
of caging effects imposed on rods by their neighbors.'® In the
present case, the appearance of plateaus or the loss of linear-
ity, both of which we observed in several simulations, indi-
cate that the assumption of uncorrelated motion breaks
down at long times. In this sense, the calculation of rota-
tional diffusivities is fundamentally different from that of
their translational counterparts, and Egs. (10) and (11) are
not valid at arbitrarily long times.'® The rotational diffusion
coeflicients reported here have been calculated, in all cases,
over times which are long compared to the initial nonexpon-
ential decay, but short with respect to loss of linearity, when
this was observed.

The first rotational relaxation time (7¥) is plotted in
Fig. 6. The growth in relaxation time with density is evidence
of increased hindrance to molecules’ ability to rotate freely.
This effect is more pronounced the higher the elongation and
quadrupole moment. This behavior is in contrast with trans-
lational relaxation, the characteristic time for which always
decreases with density as long as the system retains its fluid
character. Trends for 7F are similar in all cases (see Table
Iv).

— 1 (j=1,2;P; = jth Legendre polynomial).

In(P, [cos (N} (4, =24, =6).

If we select a ratio of relaxation times within 20% of the
theoretical value (i.e., 2.4 < 7%/7¥ <3.6) as a criterion of
compliance with Debye-type behavior, several trends
emerge from the data in Table IV. At low and intermediate
densities, only the long molecule with quadrupolar interac-
tions included exhibits Debye-type behavior. At liquid-like
densities (p* = 0.348), we observe breakdown of Debye be-
havior only for the short molecule, irrespective of the pres-
ence of quadrupolar interactions.

The calculated relaxation times and diffusion coeffi-
cients are trivially related to each other [i.e., via Egs. (7)
and (8)] only if the Debye theory is valid, since the former
were calculated by measuring the time it takes for the loga-
rithm of a Legendre polynomial to decay to a fixed value,
and the latter, from the slope of the time dependence of the
logarithm of the corresponding Legendre polynomial. The
time-dependent behavior of the two first Legendre polyno-
mials is shown in Fig. 7. Figure 7(a) illustrates the evolution
of (P,(cos 8)) at liquid-like density (7T* = 11.517), and
Fig. 7(b), the evolution of(P,(cos 8)) at the intermediate
density.

Figure 8 shows the time dependence of (8 ?) for the three
quadrupolar systems. Note that §(z) is the instantaneous
angle between orientations separated by a time ¢; according-
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ly, {82) does not grow without limits'”'® and should not be =~ {2.04 (simulation), 197 [Eq. (5)1}, (2.62,2.67),

confused with the mean squared angular displacement with
respect to a fixed orientation.'®"'® As with the Legendre
polynomials, ensemble averages were computed by averag-
ing over molecules and initial times. At low and intermediate
densities the theoretically predicted limit [(82) - (7 — 4)/
2 =2.93, see Eq. (5)] is attained in all cases. The slower
relaxation of the long molecule [Fig. 8(a)] is indicative of
the importance of quadrupole-induced angular correlations
at low density.

At the lowest, gas-like density [p* =0.0347; Fig.
8(a)], both the short and medium molecules overshoot the
long-time (6 ?) limit. Since (6 ) = 7/2 indicates uncorrelat-
ed orientations, this short-time overshoot is tantamount to a
negative correlation with respect to an initial configuration.
Analogous behavior, in the case of velocity autocorrelation
functions, is known to be hydrodynamic in nature.?® The
behavior shown in Fig. 8(a), however, is not hydrodynamic:
it disappears upon increasing density, and occurs because
both the short and medium molecules experience large angu-
lar displacements between “collisions.” From Fig. §(a), and
using (62)'/2~ (@) for estimating purposes, it follows that a
short molecule experiences, on average, an angular displace-
ment of 0.77 (peak of (6 %) ~ 4.87) before undergoing appre-
ciable interactions.

Also shown in Fig. 8(b) are theoretical predictions of
(6%(1)) according to Eq. (5), for the long molecule (this
calculation is only meaningful when there is close agreement
between Dy, and Dy, ; see Table IV). Equation (5) is valid
for long times. In particular, the condition'’ ¢*
>(10D%)~" implies £*>0.3 (p*=0.1381), £*>2.3
(p* =0.348, T*=11.517), and 1*>4.2 (p*=0.348,
T* = 7.586). At medium density, when the long-time condi-
tion can easily be satisifed within the time span of a simula-
tion, there is good agreement with the Debye-based calcula-
tions: for ¢ * = 2,4,6,8, and 10, the mean squared angles equal

(2.83,2.86), (2.87,2.91), and (2.80, 2.93), respectively.

The importance of electrostatic interactions in slowing
down rotational dynamics can be seen by comparing rota-
tional relaxation times for the long molecule, with and with-
out quadrupole (Table IV): 7, (QQ)/7, (no QQ) equals
7.86 at low density, 7.64 at medium density, and 11.17 at
liquid-like density (7'* = 11.517). The strong orientational
correlations imposed by quadrupolar interactions are absent
in the purely Lennard-Jones case.

Further evidence of hindered rotation at liquid-like den-
sity was also found by Steele and Streett’ in their study of
diatomic Lennard-Jonesiums with quadrupolar interac-
tions. These authors studied short molecules (elonga-
tion = 0.592 in our units), at p* = 0.413 and 7* = 6.304,
and suggested the appropriateness of a libration-based mod-
el to describe rotational dynamics in orientationally corre-
lated fluids.

The short-time behavior of (8 2(¢)) is directly related to
infrared or Raman measurements of (cos #(¢)) on the pico-
second time scale,”' since (82(¢)) =2(1 — {(cos 8(¢))) for
(6%(1)) €12. Numerous examples of such measurements for
simple molecules such as carbon monoxide, carbon tetrach-
loride, or chloroform are available.?! For long times, low
frequency electric birefringence measurements of rotational
relaxation kinetics?> provide an independent estimate of
(6%(1)) in cases where this quantity exhibits plateau-type
behavior [Fig. 8(b); curve /]. In this approach, which is
based on Doi and Edwards’ theory,? (82(¢))°* is the aver-
age angle spanned by the linear molecule confined in a cage
during the cage’s lifetime.

Viscosity

Shear viscosity coefficients were calculated from the
expression®*
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quadrupolar molecules, at p* =0.1381
and T* = 11.517. 5, m, and / denote the
small, medium, and long molecule, re-
spectively. Time is in units of
Tcev/Meo,/ €cc-

(b) TIME

1 [d &
1=l 3, 0P~ Oy ),
(12)

where the time derivative is taken in the long time limit, and
where 7;p,; is the product of the ith component of particlej’s
center-of-mass coordinates and the k th component of parti-
cle s linear momentum (i# k). Ensemble averaging, in this
case, is over initial times, and over the six possible combina-
tions of r;p,; with ik (i.e., xy, xz, yz and their symmetric
counterparts). No statistically significant difference was
found between 7 calculated via Eq. (12) (with due
allowance for the system’s periodicity) and the same quanti-
ty computed from Hoheisel and Vogelsang’s stress tensor-

explicit version.?” In the present case, the “displacement” in
Eq. (12) was calculated as

ry (O)py (1) — r;(0)p,; (0)
=22 {r;(nAn)p,; (nAt)

—r;[(n— DAt ]py[(n—1Ar]}. (13)
Incremental “displacements” were computed taking into
consideration the system’s periodic boundary conditions.
The correlation coefficient for the linear regression of the
slope involved in the calculation of % via Eq. (12) was
greater than 0.99 in all cases reported here.

Calculated shear viscosities are listed in Table III. In all
cases the value of this property increases with density for a
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given elongation and quadrupole (including zero quadru-
pole). At constant density and elongation, introduction of a
quadrupole moment results in a viscosity decrease. No clear
trend emerges from Table III for the elongation dependence
of viscosity at constant number density. Viscosity changes
are within the statistical uncertainty of 4+ 13% (see the Ap-
pendix), with the exception of the long molecule at low den-
sity. In this case, the viscosity is significantly higher (lower)
than that for the short and medium molecules in the absence
(presence) of quadrupolar interaction.

This relative insensitivity of viscosity to elongation
changes could in principle be explained in terms of a rough
balance between packing and orientational effects, but
further research is needed here. A detailed investigation of

the importance of orientational order with respect to mo-
mentum transfer in linear molecular fluids is currently in
progress. This study is especially significant in the light of
the pronounced reductions in viscosity which resulted, in
every case, upon addition of a quadrupole moment.

The calculation of shear viscosities via Eq. (12) involves
only an average over initial times, whereas diffusivity calcu-
lations involve averaging over initial times and over all mole-
cules. There being no other way of ascertaining the statistical
significance of viscosity calculations, except for performing
averages over several runs (see the Appendix), or by com-
paring with nonequilibrium?® simulation results, we merely
point out here the need for comparative studies of viscosity
calculations for molecular fluids using different techniques.
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CONCLUSION

Quadrupolar interactions give rise to behavior which
differs in important ways from that exhibited by otherwise
identical but quadrupole-free systems. Whereas the configu-
rational energy decreases in magnitude as the molecular
elongation is increased isochorically and isothermally in a
system composed of nonquadrupolar linear molecules, it in-
creases in magnitude when the same perturbation is intro-
duced in a quadrupolar system with given partial site
charges. Similarly, pressure is a monotonically increasing
function of elongation at constant density and temperature
in the absence of quadrupolar interactions, but shows a max-
imum at intermediate elongations for quadrupolar systems.
The latter phenomenon is a consequence of the fact that in-
creasing the elongation at constant quadrupole and increas-
ing the quadrupole at constant elongation have opposite ef-
fects on the pressure, the former perturbation tending to
increase it, and the latter to decrease it.

Center-of-mass mobility is invariably reduced by the
presence of quadrupolar interactions vis-a-vis a system com-
posed of nonquadrupolar linear molecules of identical elon-
gations. Furthermore, rotational relaxation tends to be con-
siderably slower in the presence of quadrupolar interactions.
This suggests the presence of orientational correlations in
dense systems whose constituent molecules have a strong
quadrupole moment. Work on this topic is currently in prog-
ress.

Quadrupole-induced hindered rotational mobility leads
to smaller angular displacements per unit time and, conse-
quently, to Debye-type behavior under density and tempera-
ture conditions at which quadrupole-free systems do not ex-

hibit exponentially decaying rotational Legendre
polynomials.
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APPENDIX

All simulations were performed at constant number of
particles, volume, and temperature (N, V,T). Sitesite inter-
actions were treated as shifted-force?’” Lennard-Jonesiums,
with parameters as per Table I, and truncation at 8.438 A
(i.e., 3.03 g, ). Quadrupolar interactions were treated via a
central potential*?

30/0; - .
——;3—"—{1 — 5(]"-j'l,-)2 - 5(1'

— 15(f;4)%(7,1))?
+2[id — s, @401,

4.2

/]

¢ij=

(A1)

where (47€,)'/2Q " is the quadrupole moment on the ith mol-
ecule, €, is the permittivity of free space (see Table I), 7; is
the center-of-mass distance between molecules i and j, £, a
unit vector pointing from the center-of-mass of j to the center
of mass of /, and 1, is the unit orientation vector coaxial with
molecule i. Quadrupolar interactions were truncated at
8.438 A.

In order to ascertain the reproducibilty of the calculated
properties, a 10 000 step simulation for the medium mole-
cule, with quadrupolar interactions was performed
(m,QQ,p* =0.1381, T* = 11.517, N = 256). The calculat-
ed energy (U*) and the pressure (P*) were — 17.31 and
1.15. Comparison with the production run reported in Table
I (U*= —17.51, P* = 1.14) indicates changes of 1.14%
(U*)and0.9% (P *). The calculated translational diffusion
coeflicient (D ¥*) and shear viscosity (#*) in the control run
were 2.56 and 1.7, whereas the values obtained in the pro-
duction run (Table III) were 2.43 (D *) and 1.6 (%*), indi-
cating changes of 5.3% (D ¥) and 6.3% (7*). Note that, for
transport properties, statistical errors can only be deter-
mined by averaging over several simulations.®

In simulations including quadrupolar interactions, the
translational equations of motion were integrated with a
fifth-order predictor-corrector algorithm,? whereas the ro-
tational equations were integrated via a fourth-order predic-
tor-corrector scheme. Rotational kinematics was described
via quaternions,*® using the singularity-free approach due to
Evans and Murad.?! Thermostating was implemented by ap-
plying separate momentum scaling to the translational and
rotational motion.*> A center-of-mass Verlet neighbor list
approach®® was used in order to compute pair interactions
efficiently, with neighbor list cutoff at 9274 A
+ 2d 5 (10.388 A+ 2d.o for low density simulations),
and updating every ten steps,>* where 2d, is the oxygen—
oxygen separation.

In order to ascertain the influence of momentum scaling
upon the calculated transport properties, a 10 000 step con-
stant energy (N, V,E) simulation was performed, for the me-
dium molecule, with quadrupolar interactions
(m,QQ,p* = 0.1381,N = 256). The average temperature
(T*) was 11.678 [1.4% higher than in the production and
(M, V,T) test run mentioned above]. The calculated transla-
tional diffusion coefficient and shear viscosity were 2.39
(D ?*)and 1.8 (*). Comparison with production run values
of 2.43 (D¥) and 1.6 (9% Table III) indicates changes of
1.65% in translational diffusion and 12.5% in viscosity due
to momentum scaling (note, however, that the tempera-
tures, as mentioned above, were not identical). The corre-
sponding (N, V,E) thermodynamic quantities were — 17.56
(U*)and 1.21 (P*), whichdifferby 0.3% and 6.1%, respec-
tively, from the production run values at 7* = 11.517 (Ta-
ble ITI). Energy conservation in the (N, ¥,E) run was 0.0085
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parts in 10* per time step, indicating negligible influence of
quadrupole truncation.

Based on the above mentioned tests on reproducibility
and on the effects of momentum scaling, as well as on several
subsequent test runs at different state conditions, we adopted
conservative values of + 6% and + 13% for the statistical
uncertainties associated with the reported values of D ¥ and
7*, respectively. As a comparison, we cite the work of Leves-
que and Verlet,”® who conclude that, for atomic systems,
statistical uncertainties of ~4% in shear viscosity can be
obtained only if simulations as long as 1000 ps are performed
(266 in our time units).

In the absence of quadrupolar interactions, both rota-
tional and translational equations were integrated via a Ver-
let scheme,® with rotational kinematics as described above.
Thermostating was implemented by applying Gauss’ Princi-
ple of Least Constraints.>>=’ In order to compute pair inter-
actions efficiently, a modified version of the recently pro-
posed Brode-Ahlrichs diagonal scheme®® was used, the
modification consisting of calculating the distance matrix
for all pairs of sites, and eliminating intramolecular interac-
tions before calculating the forces.

System sizes for all of the simulations performed in this
work are shown in Table V. The integration step for the
simulations including quadrupolar interactions was

TX10™* 0ccyfMeo,/€cc, and 3.335X 107 a¢cy /Mo, /€cc

for nonquadrupolar studies. In order to verify the insensiti-
vity of calculated properties to changes in the numerical
scheme (i.e., Verlet vs predictor-corrector, Brode—-Ahlrichs

TABLE V. System sizes for the simulations performed in this work.

p‘ Tl

(posc) (kT /ecc) System N

0.0347 11.517 s, no Q0 125
0.0347 11,517 m, no QQ 125
0.0347 11.517 1, no QQ 125
0.0347 11.517 5, 00 500
0.0347 11.517 m, 0Q 500
0.0347 11.517 1,00 500
0.1381 11.517 s, no QQ 125
0.1381 11.517 m, no QQ 125
0.1381 11.517 I, no QQ 216
0.1381 11.517 s, Q0 256
0.1381 11.517 m, Q0 256
0.1381 11.517 1, QQ 256
0.348 11.517 s, no Q@ 216
0.348 11.517 m, no QQ 243
0.348 11.517 I, no QQ 512
0.348 11.517 5, 00 256
0.348 11.517 m, 00 500
0.348 11.517 I}, 00 500
0.348 7.586 s, no Q0 216
0.348 7.586 m, no QQ 343
0.348 7.586 I, no QQ 512
0.348 7.586 s, 0Q 256
0.348 7.586 m, Q0 500
0.348 7.586 1,00 500
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vs neighbor list), two test runs were performed on the medi-
um molecule (T* = 11.517, p* = 0.348), in the absence of
quadrupolar interactions, and using the two different simu-
lation methodologies. Equilibrium properties differed by
less than 1%. The calculated translational diffusion coeffi-
cient (D¥*), first, and second rotational relaxation times
(7%,7%) were 2.47,0.113, and 0.100, respectively (predictor-
corrector, neighbor list algorithm), and 2.54, 0.115, and
0.064 (Verlet, Brode-Ahlrichs algorithm). Note that,
whereas pressure, energy, and translational diffusivity are
true properties, the rotational relaxation times are qualita-
tive measures of rotational dynamics and become properties
only in the Debye limit, when the Legendre polynomials
decay exponentially.

An accurate comparison between the pressure and ener-
gy calculated for the base quadrupolar case (m,QQ) and
analogous computations by Murthy et al. (model C)*is not
possible, since these authors do not report their cutoff dis-
tance for force and potential evaluations. Nevertheless, we
performed a test simulation using truncation at 8.91 A, at
identical conditions as those used by Murthy er al?*
(p*=0.346, T*=176), and obtained U*= —359.2,
P*= —0970, where Murthy et al* obtained
U*= — 5808, P*= — 0.485.

Initial center-of-mass positions corresponded to an fcc
lattice (quadrupolar simulations), and to a simple cubic lat-
tice for nonquadrupolar studies. Orientations corresponding
to an a-fcc structure were initially assigned to the quadrupo-
lar systems; the nonquadrupolar simulations were started
from either random (p* = 0.0347, p* = 0.1381) or ordered
[i= (V3/3)i + (V3/3)] + (J3/3)kp* = 0.348] orienta-
tional configurations. Random translational and rotational
velocity components corresponding to the desired tempera-
ture were assigned, and the ordered structure was allowed to
melt for a number of steps which varied from 3000 to 20 000
time steps. Simulations were always at least 20 000 time
steps (i.e., approximately 53 ps for quadrupolar studies, and
25 ps for the nonquadrupolar studies).

Time averages were computed by performing several
“experiments” with displaced origin in the course of a given
simulation. In the quadrupolar studies, ten such experi-
ments were conducted, each separated by ten time steps,*
and lasting 19 900 time steps. In the nonquadrupolar stud-
ies, ten experiments were conducted, separated by 1000 time
steps, and each lasting 11 000 time steps.

We now discuss the calculated properties for the CO,-
like system (m,QQ; see Table I). Simulated and experimen-
tal data are compared in Table VI. The shifted-force®’
RTSLJQ with parameters as per Table I overpredicts pres-
sures. Agreement at the subcritical density (p* = 0.0347;
p = 2668 mol/m?), though, is good. This, of course, would
call for a detailed tuning of potential parameters if the shift-
ed-force RTSLJQ were used as a predictive model for CO,;
as has already been stated, however, this is not the goal of
this work.

Shear viscosities are substantially higher than experi-
mental values (see Table VI). It is not at present possible to
ascertain whether this discrepancy is a consequence of the
nonpredictive nature of the potential, or if it reflects inherent
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TABLE VI. Calculated and experimental properties for the CO,-like sys-
tem (m, QQ).

T P Yoo 7 D,* y 7°
(K) (mol/m®) (bar) (cp) (cm®/s)  (bar)  (cp)

334 2668 65.3 0.0693 204x107° 58
334 10620 2114 01140 500x10™* 128
334 26721 2427 03220 7.9x10°%

220 26721 514 e

0.0188
0.0383

60

2Calculated via MD (see Table III). Blank values were not calculated in
this work.

®Experimental (Ref. 40). Blank values either not available experimentally
or not calculated in this work.

limitations in the statistical significance of computations ac-
cording to Eq. (12) with sample sizes of order 10? and run
durations of order 10* time steps.

As for translational diffusion coefficients, we note in the
first place the constancy of pD, up to the critical density, in
agreement with elementary kinetic theory. The magnitude
of D, is also in qualitative agreement with the measurements
of Robb and Drickamer*! at slightly different conditions: at
315 K, these investigators obtained D, = 4.88 X 10™* cm?/s
(p =9091 mol/m?), D, =3.43X107* cm®/s (p = 11364
mol/m?), and D, =2.87X10™* cm?/s (p = 13636 mol/
m?).
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