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The equilibrium state attained by a single-phase fluid or fluid mixture when under the
influence of gravity and subject to given external constraints differs, as is well known, from its
gravity-free counterpart. The thermodynamic stability of single-phase fluids and their
mixtures, however, is shown to be uninfluenced by the presence of gravity. Single-phase fluids
and their mixtures are thermodynamically stable when under the influence of gravity if, and
only if, the gravity-free stability criteria are satisfied everywhere throughout the fluid volume.
Gravitational fields, therefore, introduce no additional mechanism whereby spontaneous

fluctuations can destabilize an equilibrium state.

INTRODUCTION

The criteria of thermodynamic stability of single-phase
fluids and their mixtures were originally derived by Gibbs.'
In the presence of external fields, an analogous derivation is
complicated by the fact that the equilibrium state whose sta-
bility is being tested is characterized by spatially varying
physical properties. Consequently, there exists no rigorous
treatment in the literature on the thermodynamic stability of
fluids under the influence of external fields.

Single-component and mixture thermodynamic stabil-
ity considerations are crucial to the understanding and pre-
vention of a variety of industrial accidents.’” These include
catastrophic damage following the mechanical failure or
rapid decompression of pressurized vessels for liquefied gas
storage,>* water vapor explosions caused by molten alumi-
num™>7 or smelt spills, sodium—uranium oxide explosions,®
or cryogen detonation following spills on water.>*"'” An in-
vestigation into the possible effects of external fields upon
the thermodynamic stability of fluids is thus, in principle, of
theoretical and practical significance.

In this paper, it is shown that single-phase fluids under
the influence of gravitational or centrifugal fields are ther-
modynamically stable if, and only if, the field-free criteria
are satisfied everywhere throughout the system under consi-
deration. Gravitational or centrifugal fields, in other words,
are shown not to introduce additional mechanisms whereby
spontaneous fluctuations can destabilize an equilibrium
state.

The present treatment is limited to gravitational or cen-
trifugal potentials which change over distances which are
large when compared to the molecular correlation length.
For a gravitational problem, this implies the assumption that
it is possible to select a length L, along the direction of gravi-
ty, such that physical properties can be considered constant
within a “slice” of height L (the slice being perpendicular to
the direction of gravity ), and such that Lmg/kT € 1, while at
the same time we demand that L be large relative to molecu-
lar dimensions (s is a molecular weight, and k7 /mg, the
characteristic length for variations in the external poten-
tial). This means that the conclusions derived here remain
valid even in the presence of fields 107 times higher than the
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Earth’s gravitational field [if, e.g., we assume a characteris-
tic molecular size of 10 A, then, for L = 1 um (i.e., 10° mo-
lecular lengths), m = 100 g/mol, T = 300 K, and g = 10*
m/s?, we obtain Lmg/kT = 0.004]. Critical points are pos-
sible exceptions to the above statement, since nonlocal ef-
fects due to the increase in the correlation length (a phenom-
enon not considered here) then become important. A
detailed analysis of the interaction between gravity and criti-
cality (not including stability) can be found elsewhere.'>~'¢

The topic of thermodynamic stability in the presence of
gravitational fields, which has not been discussed in the liter-
ature, should not be confused with the subject of hydrody-
namic stability in gravity-related situations, a venerable field
which has attracted the attention of major scientists to situa-
tions ranging from the Rayleigh-Bénard problem'” to the
gravitational stability of stars.'®!® We also mention in this
context the work of Dickinson and his colleagues®>*' on the
sedimentation of binary liquid mixtures in the vicinity of a
critical point under the action of gravity, an extremely inter-
esting example of the interaction between thermodynamic
and hydrodynamic effects.

Because the thermodynamic stability criteria to be de-
rived here are identical to the corresponding field-free coun-
terparts, the present work can be regarded as a proof of the
formal independence of thermodynamic stability vis-a-vis
the presence of centrifugal or gravitational fields.

PURE FLUIDS

We consider in the first place an isolated pure fluid, in
equilibrium under the influence of gravity. As shown by
Gibbs,! this implies temperature uniformity, a pressure dis-
tribution satisfying

4ap _

dh
and a chemical potential distribution satisfying

— mgp ()

4+ mgh = pu° = const, (2)

where 4 is the relative height with respect to an arbitrary
datum, measured along a line parallel to gravity but increas-
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ing in the opposite direction, m is the fluid’s molecular
weight, p its number density, y, is the chemical potential at
the datum level, and g is the acceleration due to gravity. All
intensive properties, therefore, are constant for a given
height.

For stable equilibrium we require that all possible varia-
tions of the fluid’s state which do not alter its entropy lead to
an increase in its energy (or, at most, to no change at all in
the latter quantity),

AU+ ¢)>0, (3)
dsS =0, (4)
dv =0, (5)
dN =0, (6)

where U = U(S,V,N) is the fluid’s internal energy, ¢ its po-
tential energy, and Egs. (4)—-(6) describe the constraints
imposed on the small variations. Equation (4) simply says
that all possible variations of interest here should conserve
entropy, whereas Eqs. (5) and (6) imply that the system is
closed and surrounded by rigid boundaries. The variations
should furthermore be small, and they do not include situa-
tions in which parts of the body suffer finite displacements. '
Expanding energy variations about the equilibrium state in
Taylor series,

AU+ ¢) =8U + 8¢ + 18°U + 165°¢ + -+ N

and taking into account the identical vanishing of §(U + ¢)
at equilibrium, the stability criterion reads

82U + 84> 0. (8)

We now divide the fluid into a large number of horizontal
“slices” of height L. If (Lmg/kT) <1, the intensive proper-
ties can be assumed constant within each slice. Furthermore,
we require that L be much larger than the correlation length.
Even with g = 10° m/s® (i.e., 10° times larger than the
Earth’s gravitational field ), Lmg/kT~ 107" for m = 10* g/
mol, 7= 300K, and L = 25 um, which is of the order of 10*
molecular lengths, if we take 10 A as a typical molecular
dimension. We therefore write (Fig. 1)

¢:Z¢V=nghVNy, (9)
4 14

FIG. 1. Subdivision of isolated system into horizontal slices y.

where N, is the number of molecules in slice y. Therefore,

a3, a%.,
=Y 69, = L (8h,) + L(6N,)’
¢ gqs} {;ahﬁ,(’ ;aNi !
9%
2N —ZL_ 8N, 6h | 10
+;¢9Nya,, ) ,] (10)
It follows from Eq. (9) that
2
94y =0, (11)
ahi
2
9, =0, (12)
IN2
%,
——%——:mg, (13)
Jh,dN,
and therefore
8¢ =2mg S 8N, 6h, =0, (14)
>

since, by definition, 84, = 0. In the light of Eq. (8), the
stability criterion now reads

5°U>0 (15)

for every possible variation of the fluid’s state which does not
alter its entropy. We now write, in completely general form,

M
U= z 82U, (16)

=1
where the effects of the generic variation (Fig. 2) are com-
puted over M subsystems of fixed height (note that this does
not imply constant volume subsystems) which can always be
taken to be of such vertical dimensions as to consider all
intensive properties constant within each subsystem at equi-
librium. Expanding U in terms of its natural variables, we

have (Einstein convention implied)

M
U=y UybXidX] (i,j=1273), (17)

/=1

where X ! denotes S,V, or N in subsystem /, and

U X, X))
! XX,

)

o4

L

I

FIG. 2. Construction of elementary horizontal subsystems to study a gen-
eric fluctuation.
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Because the system is closed and its entropy and volume are
constant, we must have

M __ _MA] !
XM= -3 6X! (18)

I=1
and therefore (Einstein convention)

—1 M—1
eu="3 visxiex;+uy|’s axt)|'s oxi]
I=1 =1 I=1
(19)
which differs from Eq. (17) in that all of the 86X, are now
independently variable. The quadratic forms can all be diag-

onalized and we can hence write (see the Appendix for deri-
vation)

= (WP (BZ ) + (15))) 0 (6Z¥)?
+ (y33)M(6Z3 )2

+ 2 [P (8Z1)* + ) (8Z5)?

I=1

+ (3,82 %)), (20)

where (y;;’), is the second order partial derivative, with re-
spect to variables j and k (j,k = 1,2,3), of the ith Legendre
transform of the energy (), in subsystem /%223;

au
e 5 a(3)
/Zl aX X[/

o (U U
= p® (EY‘—,.--)&—X“’XI'+1"'-9XH+2) ‘ (21)
1

In the above equation, # is the number of components in the
system (n = 1 for a pure fluid), and X1 j] denotes constancy
of all X’s except for X;. Variations in Eq. (20) have the fol-
lowing form:

6Z!=8X! + z 0§),6X !

j=i+1
(i=123'l=1 M—1), (22)
M1
sz¥="y 2 2 [(y,gf‘))M sex|. oy
I=1 I=1

Equations (19)-(23) are mathematical identities. For ther-
modynamlc systems, the partial derivatives p3’ are identi-
cally zero.?? This is easily shown by choosing any of the
possible permutations (S, V,N; S,N,V; etc.) for the ordering
of the independent variables of the zeroth-order Legendre
transform (i.e.,, U) and writing down the resulting y{3
expression. For the ordering (S,V,¥), we have

du)

(2) 24

3 (aN TP 24
OF

which is obviously zero. Likewise, for other orderings, 53’ is
always the derivative of an intensive quantity with respect to
an extensive quantity, keeping two intensive quantities con-
stant: this is always zero for pure substances. With this sim-
plification, we have, finally,

82U = z[u“”) (6Z1)2 + ), (6Z5)%] (25

I=1

with variations as per Egs. (22) and (23). Since each §X ! is
independently variable, it is necessary in order for §°U to be
positive that

WD) [8XT + (112)a8X 5 + (138X 5]
+ (2o [6X 5 + (536X 5]
+ I w [8X T + (1) udX 5 + 1) WX 5]
+ M [6X5 + (1) wbX 5] >0 (26)

for all . Since the choice of M is arbitrary, it is necessary in
order for 62U tobe positive that the above inequality be satis-
fied in the particular case when a and M have the same
height. When this is the case, y{.’, p{3’, and y{3’, being inten-
sive properties, are equal in @ and M. Furthermore, as shown
in the Appendix, if two subsystems a and 3 have equal inten-
sive properties,

N = NP g, (27
N e =N20)g (28)

which means that, when @ and M have the same height, Eq.
(26) is satisfied, for arbitrary 6X ¢, if, and only if,

9 >0, (29)
¥’ >0. (30)

Inequalities (29) and (30) are also necessary conditions of
stability when a and M have different heights, since
¥, ¥y, and pi2’ are now different in @ and M, and it is
always possible to choose X §, 6X 5, and 8X § in such a way
that 6Z ¢ vanishes but §Z ¥ does not (or vice versa), or §Z ¢
vanishes but 8Z% does not (or vice versa), where
8Z ¥ and 5Z % are the third and fourth term in brackets,
respectively, in Eq. (26).

Since the choice of a is completely arbitrary, inequal-
ities (29) and (30) must be satisfied throughout the fluid. It
follows trivially from Eq. (25) that these conditions are also
sufficient with respect to the requirement that 58*U be posi-
tive. Inequalities (29) and (30) are simply the familiar grav-
ity-free stability criteria. To see this, we choose any ordering
for the independent variables (S,V,N, say), whereupon we
have

’

© _ ((72 T
yn = 3 =
as</vn NC,

= (24) ~ (%)
2 IV N aV/rw

and therefore, the inequalities read

C,'>0,
K;'>o0.

We have thus shown that the necessary and sufficient condi-
tion for a pure fluid to be thermodynamically stable when
under the influence of gravity is that the gravity-free stability
criteria be satisfied everywhere locally throughout the fluid.
From this conclusion there follows a futher simplification,
which we derive using arguments presented elsewhere?
connection with gravity-free stability. It follows from the
properties of Legendre transforms®? that
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Furthermore, as we approach a limit of stability from a sta-
ble region, y{9’ >0 [see Eq. (29)], and y5’ >0 (since the
ordering of the independent variables is arbitrary, and pi5’
becomes y{9’ upon interchanging labels 1 and 2). Therefore,
yi always vanishes before 39’ or y{9’. Thus, the stability
criteria reduce to

y53' >0 (30)

which gives rise to six inequalities, corresponding to 3! ways
of ordering the three independent variables (S, ¥V, V). The six
inequalities are

opP

— 0, 32
(5V>T,N < G2
@Q 0, (33)
85 PN

du )

— 0, 34
(BN Y > (9

du )

— 0, 35
(dN PS > (33

8T)

- 0, 36
( 35 )uv” (30)

P

il 0 37
(aV)#,S < ( )

A pure fluid under the influence of gravity is thus thermody-
namically stable if, and only if, the six equivalent inequalities
(32)-(37) are satisfied everywhere locally throughout said
fluid. The above inequalities are equivalent (from a stability
point of view) in that they are all satisfied (or violated)
simultaneously, a fact which follows from their common ori-
gin in the single inequality y$}’ > 0, the particular forms of
which are obtained via the purely mathematical operation of
changing the labels with which the independent variables
(S,V,N) are identified.

The above derivation can be generalized to nonuniform
fields,” in which the body force is a function of position. To
illustrate, we consider rigid rotatton of a liquid, such as
would occur if a tube is placed in a centrifuge and rotated at
high speed. Then, we can write

4=

2
mo E N2,
i
where o is the angular velocity and we have divided space
into thin concentric cylinders centered at the axis of rota-
tion, with 7, the radius measured outwards from the axis of
rotation. These cylinders intersect the rotating tube along
annular slices, 7. The second order variation then becomes

8¢ = mw® 3 (N, (8r,)* + r 86N, 6r,)
v

which vanishes identically, since ér, is, by definition, zero.
Equations (19)-(37) then apply unchanged, provided the
horizontal slices in Fig. 2 are replaced by annular slices as
described above, within each of which intensive properties,

Pablo G. Debenedetti: Thermodynamic stability

as well as the centrifugal potential ©*r*/2 can be taken as
constant.

That a pure fluid must everywhere satisfy the gravity-
free stability criteria in order for it to be thermodynamically
stable when under the influence of gravity is equivalent to
saying that the presence of said external field does not pro-
vide for additional mechanisms whereby spontaneous fluc-
tuations can destabilize an equilibrium state. The irrelevance
of gravity with respect to thermodynamic stability, though
formally demonstrated in the preceding discussion, is more
clearly illustrated by considering the simplest elementary
fluctuation, namely, one involving just two subsystems
(a,f3) of the type depicted in Fig. 2. In this case, since the
overall system is isolated, we must have X ¢ = — 6X ?,and,
therefore,

SU=(Ug+ UL)SX 16X ¢

or equivalently,

(38)

2 a > alj (12
FU=a,|0XT+ Y —6X;

j=2 4y

2
1;23 5)(;’} e (BXD)E (39)

22

+ bzz{ﬁX‘z" +

where (see the Appendix)

a;,=US%+U", (40)
a,:a,;
by =a; ———= (i,j>2), (41)
a,,
byby; ..
ey =by — L (i,j>3). (42)

22
Since all 6X ¢(i = 1,2,3) are independently variable, it is
necessary and sufficient for stability that

a11>0y (43)
by, >0, (44)
€33> 0. (45)

The ordering of the variables being irrelevant, we investigate
the consequences that follow from the above inequalities for
the particular choice (1=.S, 2=V, 3= N). Inequality
(43), upon rearrangement, then reads

—-+-%>O

1
(r=NFf/N%),
C{’j CU

(46)

where we have used the fact that temperature is uniform
throughout the fluid, and the notation ¢ denotes the iso-
choric specific heat (per molecule) in subsystem €. Now, if
and 8 have the same height (or equivalently, in the absence
of gravity), Eq. (46) implies ¢, ' > 0. If, however, @ and 8
have different heights, and in the presence of gravity, ¢, be-
ing, in general, a function of pressure, is different in both
subsystems. Consequently, the above relationship could be
satisfied even if ¢Z or ¢ violated the requirement ¢, '>0.
But the subsystem which violates the condition ¢, ' > 0 can-
not possibly participate in fluctuations involving other sub-
systems having its same height, nor can it participate in fluc-
tuations involving other subsystems of different height
which also violate the condition ¢, ' > 0, for either of these
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possibilities would violate Eq. (46). Since the choice of sub-
systems and fluctuations is arbitrary, the criterion a,,>0
can only be satisfied if ¢,” ' >0 everywhere throughout the
fluid: gravity does not alter this condition of stability.

Inequality (44), after rearrangement, can be shown to
read

B a —
) &) lw=al @
where
-G, -G <48>
J
rarrara ™ (CLER] 2. |

where v and s are specific quantities, and

r-2 +p——2 (>0),
pe

o) - e -
S CHE

M= — v

which implies that Eq. (45) is trivially satisfied if

[2+(57).] -2 (57). >

Thus, if Eq. (54) were satisfied without invoking any addi-
tional conditions other than the ones derived from Eqs. (43)
and (44), it would then follow that no new stability criteria
result from the requirement that 82U >0 for an arbitrary
fluctuation involving two subsystems, when the latter are
acted upon by the influence of gravity. This is easy to prove.
Noting that A denotes variations in properties subject to the
restriction that the temperature be unchanged, we write,
with pressure as an independent variable,

A[ (aP) ] [[i (ap/KT)] —ap]6P+0(5P)2,
ar T

aT
(55)
As = —va,8P + O(8P)?, (56)
JdP ad
Al —] =|— K 8P + O(6P)3, 57
(T)u [ap(a"/ T)]T +0o©n S

where a,, is the thermal expansion coefficient. Invoking Eq.

(1), the above expansions can be combined to yield

1727 —2y1/2
T

6885

Using an argument identical to the one put forth in connec-
tion with inequality (46) (note that A vanishes for equal
height subsystems), and invoking the fact that ¢, >0
throughout, it follows that Eq. (47) can only be satisfied for
an arbitrary choice of subsystems if K, > 0 throughout the
fluid, as in the gravity-free case. From the previous discus-
sion and Eq. (31), it follows that ¢, > 0 is a necessary (but
not sufficient) condition for stability, whereas K, >0 is
both, as in the gravity-free case.

Finally, it remains to be shown that ¢,,, which vanishes
identically in the gravity-free case, does not lead [via in-
equality (45) ] to additional stability criteria in the presence
of gravity. To this end, we invoke Eqs. (40)—(42); upon
substitution into Eq. (45), and after considerable rearrange-
ment, the latter inequality can be expressed as

1 r

S ]n] (49)
K2 @ K=
(50)
1 r 172
. R 51
[p”K?+p“K‘;] ey
(52)
(53)
{

[a[+(57),] - ooJ2(57).

aTr

da,/K,
= p*(mg)? [(——1] (5h)* + OBk’ (58)

Therefore, inequality (45) is trivially satisfied, and does
not imply any new stability criterion. Algebraic manipula-
tions leading from Egs. (44) and (45) to Egs. (47) and
(49), respectively, are outlined in the Appendix.

FLUID MIXTURES

The preceding treatment can be straightforwardly ex-
tended to fluid mixtures. In the first place, we replace Eq.
(2) by its mixture analog,’

s+ mgh=p =c
with temperature uniformity and Eq. (1) unchanged. Con-
servation of mass [i.e., Eq. (6)] becomes

dN, =0, (60)

where / denotes the ith mixture component (/ = 1,...,n). Itis
clear that for nonreacting mixtures, Eq. (18) applies un-
changed to every component,
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M1

Z SN
1=1

and so, therefore, does Eq. (20), with additional terms up to

yohl L 2 (62, 5)?% Likewise, Egs. (22) and (23) are un-

changed, except for the fact that / now runs from 1 ton + 2,

(S,V,N,,...,N, ), and the upper bound in the j summation is

SNM— (i=1,.,n) (61)

n + 2. Similarly, it is easy to show that y{"",'), , vanishes
J
we oo oo | neo o
yj(q{)l,j+l =
PO L7 E LN I F

Now, the generic element in the above determinants has the
form

I
y“”z( ) (kI<j+1), (64)
" X, /xu)

where £, is the intensive property conjugate to X,

au
6= (5 )
‘ X, X[k ]

We will now show that y{?’ can always be expressed as
the product of N ~! times an intensive property. If X, is a
molecule number, it follows that [since all other molecule
numbers are held constant in Eq. (64), along with .S and
V1y can be expressed as

y;fz))=N—l(1—Zz)(a k) ) (65)
21 /SN

where z, is a mole fraction, and where the product
(1 —z,) (&, /dz,) is an intensive property. If, on the other
hand, X, is S or ¥, we have [since all N, are now held con-
stant in Eq. (64)]

a
sy - (2)
as Jvz..z,
for X, = S, and
a
y,i‘,”=N—‘(—~§k) (67)
aU 85,2450 002Zy,

for X, = V. The partial derivative in Egs. (66) and (67) is,
once again, an intensive property. Equations (65)—-(67) im-
ply that the term N 7! can be factored out of both determi-
nants in Eq. (63), to obtain

Vi1 =N"UDQ D], (68)

where |D (| denotes the mth order determinant with ele-

ments Ny{? which, according to Egs. (65)—(67), are all in-

S

identically; Eq. (25) therefore remains unchanged in form,
but contains additional terms, up to y{*) | ,, ,(6Z, , ;)
Next, we replace Egs. (27) and (28) by the identity

Na[«";i)l,jw «=N* 141l

which can be proved by writing y{’, ;, , as a ratio of deter-
minants®2:

(j<n) (62)

© -1
iy

(63)

©

tensive properties. Thus, Eq. (62) is indeed satisfied when-
ever « and /3 have equal heights.

Using arguments identical to those invoked in the case
of pure fluids, therefore, it follows that a single-phase fluid
mixture under the influence of gravity is thermodynamically
stable if, and only if, the gravity-free stability criteria are
satisfied everywhere throughout the mixture. The gravity-
free criteria for an n-component mixture can be expressed in
Legendre transform notation as?

Vi ans1>0 (69)

of which Eq. (30) is obviously a particular case. Specific
examples of the application of Eq. (69) to binary and ternary
mixtures can be found elsewhere.?
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APPENDIX

In order to prove Eq. (20), we consider the general qua-
dratic form Q,

n n
0= Z Z U;X;X;.

i=1;=1

(AD)

If u,, does not vanish, we can always write

X n n
Qzulll:x%+2_lzuljxj +Z
=1

Uy j=2

Z u;x,;x; (A2)

2

j=
or, equivalently,
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Q—u,,[(x,%- Y —= )2

i=2 Uy

(S )]+ 5 5w

=2 Uy, i=2j=2

(A3)

which, upon rearrangement, reads

Q—u11[x1 + z x] + 2 2 upx; X, (A4)
=2 K2

i=2 Uy
where
uu
j %1k
Uy = e T (A5)
11

The double summation on the right-hand side of Eq. (A4) is
a quadratic form, formally identical to Q. We may thus apply
the procedure leading from Eqs. (Al) to (A4) to it, and,
successively, to the remaining quadratic forms, to obtain fin-
ally,

Q= u“[xl +122(u”>x1} +un [x2 +,23(Zn) j]z

B uu 2 e 1a
+ 3 | X3+ 2 + ot u,, X, (A6)
F=a\uj;
where
, U Uy ..
uij=u,-j———u—, L, j>2, (AT)
11
unuy .
ul =u, ——=, i j>»3, (AB)
i i u
22
—2 n-—-2
ur_cou :
—1 -2 n—1,i%n—1,j PR
up  =uyT e ———————=, i, j>n (A9)
un—l,n—l

and where the validity of Eq. (A6) is only limited by the
requirement

U, 1,1 >0 (0<i<n—1) (A10)
with the notation u,, = u}, implied. We now relate Eq.

(A1) to the 5°U expansion through the correspondence

u; - Uy, (All)
x;—>0X,. (A12)
Invoking the properties of Legendre transforms,”? we can
write
U,.
ywW== (j#D, (A13)
It
U,U,;
P =U, - =% (>, (A14)
Ull
(1), (1)
y =y “ BB gy, (A15)
Va2
whereupon Eq. (A6) now reads
Q=yV[8X, + y126X, + y1y6X,]?
+Y§;)[5X2 +.V§3 5X3]2 +}’§§)(5X3)2 (Al6)

which agrees with Egs. (20), (22), and (23).

Next, we prove Eqgs. (27) and (28). In the former case,
we mnote that P9  can either equal 7/NC,,
— N =3P /dv),,or (du/dN)s, That Eq. (27) is satisfied
in the former two cases is obvious (a and 3 have the same

height). In the latter case, we invoke the identity

(&), - s+ HF )

dN/sv NIK; ¢, \ K,

whereupon Eq. (27) follows immediately. As for Eq. (28),
(n

(A1)

y5,’ can be written in six different ways (i.e., 3! permutations
of variables 1,2,3) which after rearrangement read
_(Q) :N—l( 1 ) (A18)
aV/rn vK
(Qy_) =N—1(L), (A19)
ON/1yv KT
(19.7:) = N—I(Z) , (A20)
dS/en c,
2
(@.) =N—'(T_s>, (A21)
IN/ps c,
—1
(EZ) N2 20T -2sap] : (A22)
aS w,v T v
(aP) _N—I[UKT+C_P(2)2_2”Z%]‘
aV/us T\s s
(A23)

from which Eq. (28) follows trivially (« and 8 have equal
heights).

Finally, we outline the derivation of Eqgs. (47) and (49)
from Eqgs. (44) and (45). In the former case, we start by
writing
[Uh + UL

Ug + U3
or, in Legendre transform notation,
[ + )]

e + WD)g
(A25)

which, in the light of Egs. (A13) and (A14), can also be
written as

b= (3 + 2))g
(yl ) (.Vl )B
e + Ui

bzz = U‘zzz + ng - (A24)

22 = (»; 0)) + (y“”),; b

[0 — )]

(A26)

Since the ordering of the independent variables is clearly
irrelevant, Eq. (44) must be true for any of the 3! ways in
which (S,V,N) can be ordered. To illustrate the physical
meaning of Eq. (44), we choose the ordering [1 = 85,2 =V,
3 = N], and write (4 = Helmholtz energy)

apP 1
D=4, = —(—) = , A27
Y2 vV aV/)en VK, ( )
) a,
Vo' =Ap =4y = —— (A28)
I
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T
(O) == U I re——— .
Y sS NC

3

(A29)

Equation (47) then follows immediately upon substitution
of Egs. (A27), (A28), and (A29) into Eq. (A26), and in-
voking the starting inequality (44).

In order to derive Eq. (49) from Eq. (45), we invoke
Egs. (41) and (42), and rewrite Eq. (45) as

2 2
(a __‘113)_ (ay; —aa3/a,,) -0
33 2 .
a, (A — ai,/ay)

(A30)

The quantities in brackets can be expressed, after rearrange-
ment, as follows:

SR,
Poa, N\ekr) T (k)"
rT va 2
+ Al —£ —S)] ](NB)], (A31)
cﬁ‘—}—rcf[ (K,-

a,, — G2 _ [ _ [(L)f’;_r__}
- ag K, (K)”

a
Al £ NB—L A32
Pl o
9 _[(pY (L)“
22 a, {(K1> T K,
st ) o
cr + re K,
(A33)

Equation (49) then follows after straightforward, if tedious,
algebra.
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