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A new operational definition of the partial molar energy is derived invoking the grand
canonical ensemble formalism. This expression, used in conjunction with the fluctuation-
explicit form of the Kirkwood-Buff relation for partial molar volumes, allows the accurate
computer calculation of all mechanical partial molar properties in a multicomponent system.
The method satisfies two independent consistency checks. Property values for all components
in a mixture are obtained simultaneously, and the length of a simulation is independent of the

number of species in the system.

INTRODUCTION

In recent publications'~> we have addressed the calcula-
tion of mechanical partial molar properties via computer
simulations. These studies can provide insight into the de-
pendence of nonideal mixture thermal and volumetric be-
havior upon such details of molecular architecture as size,
shape, symmetry, mass, and charge distribution, etc. In the
specific case of mechanical partial molar properties (partial
molar volume, energy, enthalpy), our immediate objective is
to develop a method whereby these quantities can be effi-
ciently calculated from the deterministic or stochastic com-
puter simulation of model mixtures.

Computer simulations provide essentially exact solu-
tions to idealized problems. If the latter are carefully formu-
lated, the exercise can ultimately result in a better under-
standing of the molecular basis underlying the bulk
properties of matter. It hardly needs emphasizing, however,
that computer simulations complement, but by no means
substitute, experimental and theoretical work. Our imper-
fect knowledge of intermolecular forces* mandates experi-
mental input. The technique’s accurate but strictly case-spe-
cific answers necessitate theoretical generalization.

Our approach’= has been the development of oper-
ational definitions based on fluctuation theory.>® A single
computer simulation then ailows the simultaneous deter-
mination of all partial molar quantities in a mixture from
“measurement” of the appropriate fluctuations. Although
all operational definitions are thermodynamic identities,
they have different numerical implications. Thus, our recent
computer calculation of partial molar energies and enthal-
pies yielded results which were, at best, approximate, and
often inaccurate.’

In the present paper we derive a new fluctuation-based
operational definition for partial molar energies. Its numeri-
cal implementation yields accurate results. This, together
with our recent partial molar volume calculations,® implies
that a general method, based on the theory of fluctuations,
has been developed for the accurate determination of all me-
chanical partial molar properties in multicomponent mix-
tures. Contrary to direct differentiation methods,'®!! the
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fluctuation approach yields answers for all chemical species
simultaneously in a single simulation.

The derivation that follows differs from the closely re-
lated work of Buff and Brout'? in one important aspect: the
resulting expression is not dependent upon the pairwise ad-
ditivity assumption. This generality is attained at the ex-
pense of including in the partial molar energy operational
definition terms such as (SESN,) (correlation between en-
ergy and concentration fluctuations). This covariance can
be easily computed in the course of a simulation, but cannot
be replaced by correlation function integrals without assum-
ing pairwise additivity.'?

OPERATIONAL DEFINITION

In what follows, we distinguish E, the instantaneous en-
ergy, from U, the average (thermodynamic) energy. Upon
expanding the energy in terms of the independent variables
appropriate to the grand canonical ensemble ( 8, ¥, fu;;
i=1,...,mB8=1/kT), and applying the partial molar op-
erator, we obtain

= - By,
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where the notation N[;j] denotes constancy of all N; except
for N;, and the identities
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have been used. Equation (2) follows from Euler’s homo-
geneous function theorem; Eq. (3) is proved in the Appen-
dix. In the above equations, the notation {Bu} denotes con-
stancy of all u;/T, Buli], constancy of all u;/T except for
u;/T, and ( ), thermodynamic averaging within an open
control volume V.

Equation (1) can be written in terms of concentration
fluctuations through the well-known Kirkwood-Buff ex-
pressions for the partial molar volume and the chemical po-
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tential derivative.>® The result is (u=U{(N)"!
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where x; is a mole fraction, and |A|; is the cofactor of the
(i) element in the symmetric fluctuation determinant |A|,
with elements

A, = (8N,8N,).

Equation (4) does not require the assumption of pairwise
additivity, and satisfies the homogeneity constraint
3,x,U, = uidentically. This relationship allows the calcula-
tion of partial molar energies from measurement of concen-
tration fluctuations and energy-concentration covariances
within an open control volume. Note that u is the equilibri-
um (thermodynamic) value of an intensive property, and is
therefore constant throughout an equilibrium system.

RESULTS AND DISCUSSION

Contrary to.the recently published fluctuation-explicit
operational definition of U, the homogeneity condition
3x, U, = u is now satisfied a priori. This is an important ad-
vantage of Eq. (4), but calls for an alternative test of the
method’s numerical accuracy. To this end, we introduce a
“trivial” Lennard-Jones binary mixture® in which €/
€, = 0,/0, =1, and whose partial molar properties, being
indistinguishable from the corresponding specific quantity,
are therefore known a priori (i.e., U, = U, = U /N). Insuch
a mixture, solute and solvent molecules differ only by virtue
of their labels.

The molecular dynamics calculation of mechanical par-
tial molar properties from their fluctuation-explicit oper-
ational definitions has already been described elsewhere in
detail.® Here, we summarize the essential features. The usual
periodically bounded computational cell is divided into eight
space-filling subcells which impose no constraint upon the
molecules’ motion. These subcells have no physical signifi-
cance, and are introduced for accounting purposes exclu-

sively. In order to compute _(7, according to Eq. (4), we
record subcell energies and compositions at every time step,
and compute the appropriate fluctuations
({EN;) = (EYN)ANT) — (N (N,N;) — (N,)(N;)),
averaged over all subcells. The energy corresponding to each
pairwise interaction is equally divided among the subcells in
which the two molecules under consideration (or their peri-
odic images) are located.

All of the pairwise fluctuations included in Eq. (4) are
also explicitly contained in the previously used operational
definition of U 3. Consequently, we simply recalculated U,
U,, and Zx, U, , using the computed values of (SESN,),
((8N;)?), and (6N, 8N, ) from “trivial” mixture simulations
published elsewhere.® Simulation parameters and perfor-
mance indicators are listed in Table I, where / is the length of

TABLE I. Simulation parameters and performance indicators.

N =256 1/0=6.6784
U*/N= —13.3219 At*=4.52x10"*
(T*)=0974 (P*)=2936

{(BTHV*/T=0.0329
((BUHV/|U| =1.394% 10

T*=kT/e; P*=Po’/e, U*=U/e

{(6P)2)V?/P =0.0735

At* = At(e/m)?/1

the computational cell &, the total number of molecules, and
At, the integration step. The equations of motion were inte-
grated via a Verlet scheme,® using 30 000 time steps after
equilibration. The Lennard-Jones potential was truncated
“exactly” (i.e., without loss of energy conservation) via the
shifted force' method, with cutoff at 2.80. Energy fluctu-
ations in Table I are an indication of the algorithm’s numeri-
cal accuracy: the total energy is theoretically a conserved
quantity in (N,U,V), molecular dynamics, and should not
be confused with subcell energies, which fluctuate during the
course of a simulation.

Results are shown in Figs. 1 and 2, where the calculated
molar (2x; -U, ) and partial molar (ﬁl, Uz) energies per mol-
ecule (expressed in units of Lennard-Jones well depths), are
plotted against the number of molecules labeled as solute
(N,). IfEq. (4) is used to compute v, , we obtain Fig. 1, Fig.
2 corresponds to the previously used fluctuation-explicit
operational definition.

Because 3x; U; = u identically, the computed value of
3x, U, is now indistinguishable from U /N (Fig. 1, Table I).
Calculations are, in this sense, exact. It is obvious from Fig. 2
that this does not apply in the case of operational definitions
which, though thermodynamically correct, do not satisfy
the homogeneity constraint a priori. It seems reasonable to
assume that a combination of longer simulations and larger
sample size would be required to solve this numerical prob-
lem. This costly solution, however, is rendered obsolete by
virtue of the new operational definition presented here.

The homogeneity constraint is a necessary but not suffi-
cient condition to be satisfied by the simulation in order for it
to be considered accurate. This is because, given ¥ and x,,
there exists an infinity of U,, U, pairs for which
x,U;+ (1 —x,)U, =u. In a trivial mixture, the correct
partial molar properties are known beforehand, and the
method’s accuracy can be tested by comparing U, and U,
with U /N. Upon varying N, between 26 and 77, we obtain
maximum errors of 4.79% and 1.19%, respectively, for U,
and U,, when the latter quantities are computed via Eq. (4).
The corresponding maximum errors in Fig. 2 are 102.3%
(U,) and 96.19% (T,).

Partial molar enthalpies follow at once from knowledge

of U, and T/j, since H U +PV Homogeneity

(H= JEx H,) and accuracy (H =H /N in a trivial mix-
ture) considerations are identical to the energy and volume
cases, since H is a linear combination of Uj and V Note,
however, that in (N, U, V) molecular dynamics, P is a fluctu-
ating quantity (see Table I); consequently, H /N is a number

with statistical, rather than deterministic significance.
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A new, fluctuation-explicit operational definition for
U,. , the partial molar energy of a component in a mixture, has
been derived. This new relationship can be used to calculate
partial molar energies in multicomponent mixtures via de-
terministic and stochastic computer simulations. The meth-
od fulfills two independent consistency tests: the homogene-
ity constraint (U= Z3N,U,) which is built into the
operational definition (and is thus trivially satisfied), and
the accuracy with which component partial molar energies
are predicted in trivial mixture simulations in which these

N=256
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to be the case for partial molar volume calculations,’ the
fluctuation method allows the accurate determination of all
mechanical partial molar properties in a multicomponent
mixture. A distinguishing feature of fluctuation-based meth-
ods is the fact that all component properties are obtained
simultaneously in the course of a single simulation, the
length of which is independent of the number of species in
the mixture. The approach cannot be used to study infinite
dilution properties; further theoretical work is required in
order to extend fluctuation-explicit methods to this impor-
tant limit (direct differentiation methods, however, are
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ideally suited for this situation'®'!).

Now that an accurate method for the computer calcula-
tion of mechanical partial molar quantities in multicompon-
ent systems has been developed, the important work of using
this tool to study the molecular basis underlying the thermal
and volumetric properties of nonideal mixtures remains to
be done. This work must include not only the study of ques-
tions such as the effect of molecular size, shape, symmetry,
and interaction potentials upon partial molar properties, but
also the adaptation of the present methodology to different
simulation techniques (such as NPT molecular dynamics,
NVT Monte Carlo, etc.) in which primitive properties'®
such as temperature and pressure, are used to specify the
simulated state point.

ACKNOWLEDGMENTS

Simulations were performed on a Cyber 205 machine of
the John von Neumann Center for Scientific Computing at
Princeton. Supercomputer time grants from the National
Science Foundation (No. CBT-8517739) and the John von
Neumann Center National Allocations Committee, and the
financial support of the National Science Foundation
(Grant No. CBT-8657010) are gratefully acknowledged.

APPENDIX: PROOF OF EQ. (3)
We first write

U=e 8P 2 z Eeﬂ("‘N'+"'+""N")QN(V,B),

N,>0 N.>0
(A1)

where Qy (V,8) is the canonical partition function, and

=(V8{uh =& (A2)

with E, the grand partition function. Differentiation of Eq.
(A1) yields

au ) oP
U - ——BVU(—) +(EN)).
(8ﬂy,~ B.V.Buli] B ) pv.puiin
(A3)
Invoking the identity
N, N,
(@) () W (Ad)
u; T.Vuli) AV /i V
we have, finally,
au )
_— = (SESN;). (A5)
(aﬂ,u,. B.V.Buli]
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