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The thermodynamically consistent behavior of any fluid whose tensile strength exhibits a
maximum with respect to temperature (tensile instability) is derived for the case where the
isochore corresponding to the fluid density at such a maximum is single branched (i.e., a
metastable solution exists only for temperatures higher than the tensile instability
temperature). The resulting thermal and volumetric picture is considerably simpler than for
the recently derived behavior corresponding to the case where the tensile instability isochore
admits metastable solutions both above and below the tensile instability temperature (double-
branched limiting isochore). Density extrema are inseparable from tensile strength maxima: a

tensile instability is, in fact, the low-pressure intersection of a spinodal curve and a locus of

density extrema.

INTRODUCTION

In two recent publications,"* we discussed the volu-
metric! and thermal® consequences which follow from the
hypothesis whereby a superheated liquid’s tensile strength
can exhibit a maximum with respect to temperature, a be-
havior which we call tensile instability. This phenomenon
has considerable practical and theoretical implications. A
fluid’s tensile strength can, e.g., be the controlling factor in
ultrasonic applications, where cavitation can occur, among
other mechanisms, through sound-induced alternating com-
pressive and tensile stresses, if the latter exceed the liquid’s
tensile strength at the prevailing temperature. The most
common example of fluids under tension occurs in trees,
where both hydrostatic considerations and experimental ob-
servations® show that sap is transported under tension (al-
though hydrostatic arguments limit the existence of tension
to minimum tree heights of 10.33 m, a sufficient but not
necessary condition in actual plants). This pervasive exam-
ple of nature’s successful implementation of a negative pres-
sure technology is in sharp contrast with our own technolo-
gical primitiveness vis--vis the handling of liquids under
tension: potentially useful applications currently exist most-
ly as laboratory prototypes (tension pumping®) or theoreti-
cal publications (irrigation®).

From a theoretical point of view, a tensile instability
occurs in a very interesting model,®” in which the properties
of metastable water are interpreted starting from the as-
sumption of the existence of a continuous limit-of-stability
locus (spinodal curve) bounding the superheated, super-
cooled, and subtriple (i.e., simultaneously superheated and
supercooled) states. In this model, the spinodal locus is ob-
tained from a truncated volume-explicit pressure expansion
whose coefficients are fitted to an empirical equation-of-
state representation of water’s PVT surface.® It can be
shown, however,” that a tensile instability is not a necessary
condition for the existence of an uninterrupted spinodal
bounding the superheated, supercooled, and subtriple states.
Our recent discussion'? of tensile instability is based exclu-
sively on thermodynamic consistency arguments, and is thus
valid for any fluid exhibiting such a behavior (see'’ for ex-
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perimental evidence suggesting the existence of tensile insta-
bilities in benzene, acetic acid, and aniline). In essence, the
treatment involves the assumption of an analytic Helmholtz
energy, whereupon variations of pressure away from the in-
stability and into metastable regions can be expressed as a
temperature and volume-explicit truncated Taylor series,
the signs of the coefficients being then determined by stabil-
ity considerations. No curve-fitting, substance-specific con-
straint is imposed upon the model’s coefficients, hence its
generality.

Assuming the validity of a volume and temperature-ex-
plicit pressure expansion about the tensile instability (or,
equivalently,"? an analytic Helmholtz energy at the instabil-
ity), the thermodynamically consistent relationship
between temperature, pressure, and volume'? has the fol-
lowing mathematical property: the tensile instability iso-
chore (i.e., the locus of states whose density equals the
fluid’s density at the instability) is the only isochore which
admits metastable solutions both above and below the tem-
perature at which it becomes tangent to the PT projection of
the spinodal curve. The physical implication of this behavior
follows from the fact that the spinodal curve, in PT coordi-
nates,"!! is an envelope of isochores and, therefore, the ana-
lytic continuation of such curves past the tangency point
(i.e., past the limit of stability) is, in general, unphysical,
with the possible exception of the tensile instability isochore.
Several unusual features follow from the assumption that,
indeed, this limiting isochore admits metastable solutions
above and below the tensile instability temperature. Thus,
spinodal retracing,' nonanalytic density maxima,' and a
metastable phase transition® with entropy and thermal ex-
pansion coefficient discontinuities but no associated density
discontinuity are direct consequences of this double-
branched limiting isochore assumption. We stress the fact
that the above phenomena are possible (thermodynamically
consistent ) but not necessary consequences of a tensile insta-
bility. This clarification is especially important because our
original treatment' was limited to this interesting but re-
stricted case.

In this paper, we derive the volumetric and thermal be-
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havior that follows from a tensile instability in which the
limiting isochore is metastable on one side of the instability
only. Although both cases are thermodynamically consis-
tent, the single-branched alternative analyzed in this paper
gives rise to behavior which can be readily identified with the
theoretically postulated volumetric properties of metastable
water.%’

Previously derived'? relationships are not rederived
here; rather, we focus upon the differences between the sin-
gle- and double-branched limiting isochore cases. Such dif-
ferences, as will be shown next, are minimal with respect to
the governing equations, but profound as to the fluid’s pre-
dicted behavior.

GOVERNING EQUATIONS

Variations in pressure away from a tensile instability
can be described, on the assumption of an analytic Helm-
holtz energy, by the expression’-?

T—1l=x(r—=12+y(v—-1)?+z(r— D)(v—1),

(1)
where
T=P/P* (P*<0), (2)
=T /T*, (3)
v=v/v¥, 4)
(T*)? (HZP)
x= 0),
P+ \ar?),, <7 )
(v*)? (BZP)
2y= 0),
= (o), <0 (6)
S T*v*( 82P) ‘ N
P* \3Tov/,

The tensile instability (denoted here by the symbol ) is the
point at which

dP

((_i—T'_)sp = 0, (8)
4P

(dTZ)sp >0, ®)

where the subscript sp denotes differentiation along the spin-
odal curve. Equation (1) is simply the second order term of
the temperature and volume-explicit pressure expansion, of
which the linear term (8P) is identically zero, a fact which
follows from stability considerations exclusively.! The only
difference between the present, single-branched limiting iso-
chore case, and the previous'”” double-branched analysis lies
in the sign of z. The two cases are illustrated in Fig. 1. Be-
cause the PT projection of the spinodal is an envelope of
isochores, we must have

(), = (7).

For a double-branched limiting isochore!? [Fig. 1(a)] we
must have
[z <0 (r<1)
z>0 (r>1)
whereas, for a single-branched isochore [ Fig. 1(b) ] we must

(10)

(1)
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FIG. 1. (a) Double-branched limiting isochore (v = 1) showing metasta-
ble solutions for 7> 1 and 7 < 1. (b) Single-branched limiting isochore
showing metastable solutions for > 1 only.

have z > 0 [the single-branched case z < 0, 7 < 1, though the-
oretically possible, does not correspond to any experimental-
ly observed behavior, and will not be considered here: the
predicted (,v), (7,7), (7,v), and (s,T) projections are tri-
vial modifications of the ones to be discussed in this paper].

In both the single- and double-branched limiting iso-
chore cases the compressibility diverges as |T— T7*| !
along the v = 1 isochore,

Ko |P* ={v[p(v = 1) +2(r— )]} "

Spinodal and density extrema loci are readily obtained from
Eq. (1). For the former, we have

v—1= —zi(r—l), (12)
4xy 2
77'—1=y—2—1 (v—1)% (13)
V4
22
7r—1=x(1———)(r—1)2, (14)
4xy
and for the latter,
vel= - (s, (15)
z
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22
7T—1=y(l——-—)(v——l)2, (16)
4xy
4
ﬂ—1=x(¥— )(7-1)2. (1n
Z
Because 7<1, it follows that
4xy ( 22)
—>1 (1> —1}.
z? dxy (18)

VOLUMETRIC BEHAVIOR

The predicted behavior for the PT projection is shown in
Fig. 2, in (7, — ) coordinates [note that, since P * <0, the
signs of d( — 7) and d(P) are the same: tension decreases
vertically upward in this diagram]. The metastable branch
of the density maxima locus terminates at the instability
(1, — 1), and extends towards the high density, low tem-
perature, high pressure region. It can be seen from the con-
tinuous nature of the isochores in the vicinity of the density
maxima locus that the latter is indeed the solution to the
condition o, =0 (e, is the thermal expansion coefficient).
In the double-branched limiting isochore case,'? on the oth-
er hand, the 7 = 1 isotherm is the locus of density maxima,
but there is a discontinuous transition, along each isochore,
from a,<0 (7<1) to a,>0(r>1). Thus, a single-
branched limiting isochore gives rise to behavior which we
can readily associate with the familiar occurrence of density
extrema in stable regions of the phase diagram, as is the case
with water at 4 °C and 1 bar.

The stability of the density maxima locus follows from
substituting Eq. (15) into the expression for the stability
coefficient (d7/dv) ., whereupon we conclude that the con-
dition a, = 0 admits a stable solution for 7 < 1 (recall that,

R =

FIG. 2. Pressure-temperature projection in the vicinity of a tensile instabil-
ity, showing spinodal curve (sp), density maxima locus (0p,x ), and limit-
ing isochore (v = 1). The arrow indicates the direction of increasing den-
sity.

for P* <0, we require dr/dv > O for stability). It is also easy
to show that, for any 7#1, — 7 (pmax) > — w(spinodal).
This follows from Egs. (14) and (17), which yield the in-
equality

(19)

1 — T s
4xy
and we conclude that, indeed, the density maxima locus lies
above the spinodal branch in (7, — 7) coordinates. The re-
gion bounded by the 7 < 1 spinodal branch and the density
maxima locus corresponds to the condition @, <0 (in the
double-branched limiting isochore case this corresponded to
the whole 7 < 1 metastable region).

It can be seen from Fig. 2 that, if isochorically cooled, a
metastable liquid reaches a limit of stability through a pres-
sure decrease if v > 1; if, on the other hand, v < 1, a pressure
increase accompanies the fluid’s loss of stability upon iso-
choric cooling. In the double-branched limiting isochore
case,'”? on the other hand, there is no limit of stability for
v < 1, but points on the spinodal for which 7 < 1 are reached
upon isochoric heating, with an accompanying pressure de-
crease.

The (7,v) projection is shown in Fig. 3. Both the spino-
dal and the density maxima locus are locally linear [see Egs.
(12) and (15)], the latter extending from the instability
(1,1) into the low temperature, high pressure, high density
region. Also shown in the figure are three isobars, the arrow
indicating the direction of increasing pressure (decreasing
tension). Note that, contrary to the double-branched limit-
ing isochore case,” the spinodal curve is well defined for
v < 1. Both the condition v(sp) > v(pm.,) for any given
7< 1, and the instability of the density extrema locus for
7> 1 follow from Eqgs. (1), (12), and (15).

Along any isobar, the isothermal compressibility and

dxy z?
_T — >

1 T

FIG. 3. Temperature-volume projection in the vicinity of a tensile instabil-
ity showing spinodal curve (sp), density maxima locus (pmax ) and isobars.
The arrow indicates the direction of increasing pressure (decreasing ten-
sion).
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thermal expansion coefficient diverge as |T — T, (P)|~ /2.
This follows from writing

(-al) —Ttq, = - Xr=D+2=1)
ar/x (v—1)+z(r—1)
and noting that, along an isobar,

2y(v—1)+z(t—1)

= — 1/(P*vK})
172
~z [(%’— ){[fsp(qr) 1P = (- 1)2}] ,
(21)
zZ(v—1) +2x(r—1)
z z
=T*ap/P*K; = Zx(l ——)(7’— 1)+ =
4xy 2y
1/2
X[(i;—y— 1){[Tsp(7r) -1 = (r— 1)2}] ,
(22)
whereupon we obtain
2 1/2
T = — 2|1 (r — 1D (4xp/z° — 1)
Ve Zy[ + 12— [+ 7 (M) ]|'?
'Ir—rs,,(vr)l‘”z], (23)
-1
P*K . =
R 2(dxy/22 — 1)|2 — [7 + 7, () ]|'/?
.IT_Tsp(ﬁ)|—1/29 (24)

or in other words, as T(v,P) - T, (P),

a,~Kr~|T— T, (P)|~' (25)
This behavior applies to the single- and double-branched
limiting isochore cases.

A schematic (v, — 7) projection is shown in Fig. 4. The
instability (1, — 1) is no longer a point where spinodal re-

-

FIG. 4. Pressure-volume projection in the vicinity of a tensile instability,
showing spinodal curve (sp), density maxima locus (o, ), and isotherms.
Along any given isotherm, (a) is a limit of stability, but (b) is not.

tracing occurs"? (i.e., the spinodal does not curve back into
the low density region): instead, it is a minimum along the
spinodal, as in the (P,T) projection. This, of course, is con-
sistent with the fact that the spinodal is well defined for v < 1.

The locus of density maxima, in (P,v) coordinates, is an
envelope of isotherms. This is a general property of density
extrema, and follows from writing

dP = (1/K;)[a, dT — (1/v)dv] (26)
and therefore,
(2) (&) --L an
aU pext av T UKT

where p,,, denotes differentiation along a line satisfying the
condition , = 0. Equation (27) is simply the mathematical
statement of the abovementioned property.

Note the pressure increase which accompanies iso-
choric cooling for v < 1 as the fluid approaches the spinodal
curve. Intersections of 7 < 1 isotherms with the v < 1 spino-
dal branch at points such as @ are limits of stability; at points
such as b, on the other hand, the isotherm and the spinodal
have different temperatures, and this point is not, therefore,
a limit of stability for the given isotherm.

ENTROPY AND TENSILE INSTABILITY

A schematic (7,s) projection is shown in Fig. 5. At any
given pressure, there are two different limit-of-stability tem-
peratures (see lower part of Fig. 5) to which the correspond-
ing isobar is asymptotic on an entropy vs temperature pro-
jection (¢, » ). As already shown in the double-branched
limiting isochore case,” along any isobar

¢~ |T— T, (P)| 72 (28)

The proof of this asymptotic behavior of ¢, will not be re-
peated here, since it is identical to the one already used in our
previous analysis” of tensile instability.

The density maxima locus, in (s,7") coordinates, is an
envelope of isobars, as shown Fig. 5. To prove this, we write

ds= —a, dP+fj":dT (29)

and, therefore,

&)~ -% 60
OT / pexe aTr/, T

Equations (27) and (30), implying that the density maxima
locus is an envelope of isotherms (P,v coordinates) and iso-
bars (s,T coordinates) are generalized in the Appendix.
Thus, the curve labeled p,.,, is an envelope of constant en-
tropy, enthalpy, and chemical potential curves in P,v coordi-
nates, and of constant volume, enthalpy, and chemical po-
tential curves in T,s coordinates. It follows from the
Maxwell relationship

a
v, =~ (7). 3

that, along any isobar, (ds/dP); <0 if 7> 7(p.. ), and
(3s/0P) 1> 0if T < 7(ppnay ), Where 7(p,.,, ) denotes the tem-
perature of maximum density, at the given pressure. This is
indeed the behavior shown in Fig. 5.

If, then, the limiting isochore is single branched, there is
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—

FIG. 5. Entropy-temperature projection in the vicinity of a tensile instabil-
ity, showing asymptotic behavior of isobars at limits of stability. Also shown
is the density maxima locus (g, ), as well as the directions of increasing
pressure (decreasing tension).

no entropy discontinuity at 7 = 1 and, consequently, no as-
sociated metastable phase transition with discontinuous
thermal expansion coefficient, and continuous volume, as
was the case for a double-branched limiting isochore."?

FLUCTUATIONS

We consider Helmholtz energy changes associated with
number density fluctuations within a fixed volume region of
fluid, in the vicinity of a tensile instability,

AAd =J (a — {a))d°r,

where g and (a) are instantaneous and (metastable) equilib-
rium Helmholtz energy densities, respectively, and integra-
tion extends to the fluid region under consideration. The
truncated free energy density expansion reads

(32)

a—(a)=#(p—(p))+—2-<1;>—(%§—)T(P—<P))2
Ip—EN]*, ...
+g| 2= [+ (33)

where the last term is the leading contribution to free energy
changes associated with inhomogeneities caused by long

2233

wavelength density fluctuations (g>0).'? Upon Fourier
analyzing the instantaneous density variation,

b=p - (p) = T 8(k)e™,
k

we obtain’ the following expression for the correlation func-
tion (B = 1/kT):

(34)

BG(r) = —l-exp( —r/r.), (35)
8mrgr

where the positive coefficient g is defined in Eq. (33), and
G= (6(r1)6(r2)) (36)

with fluctuations weighed according to the Boltzmann fac-
tor exp ( — SA A). The mathematical details whereby Eq.
(35) is obtained from Egs. (33), (34), and (36) have al-
ready been discussed elsewhere>'? and will not be repeated
here. The quantity r, in Eq. (35) is a correlation length, and
is given, in dimensionless form, by the expression®

r.oo*

[2g/( — P*)]V? =r ={[2(v—-1)+z(r— D]}V

(37)

The locus of points with constant correlation length is thus
the solution of the equation

Z(T—1)=%—2y(V—I)EQ(V), (38)
where
r=Cc"'? (39)

and where the relevant solutions correspond to v=1 (i.e,
the physically meaningful fluctuations under consideration
are caused by the proximity of the spinodal curve and not,
obviously, by the vanishing of v).

The graphical solution to Eq. (38) is shown in Fig. 6 for
the case 2|y| > z (corresponding to positive v along the spin-
odal curve as 7—0). Figure 6(a) is the actual solution to
z(7 — 1) = Q; the resulting », = constant lines in (7,v)
coordinates are shown in Fig. 6(b). The correlation radius
diverges as the spinodal curve (labeled 7. > ) is ap-
proached, as expected from stability considerations. At the
tensile instability volume (v = 1), the relationship between
temperature and correlation radius is

C 1

y=1)=14+—=14—"—— (40)
7 + z z(r)?
or, equivalently,
2
r;(v=1)=[_——1——]. (41)
z(r~—1)

CONCLUSION

The thermodynamically consistent behavior that fol-
lows from the assumption that a superheated liquid can ex-
hibit a maximum tensile strength (tensile instability) at a
particular temperature has been derived on the assumption
that a volume and temperature-explicit pressure expansion
about the tensile instability is admissible. This is equivalent
to the assumption of an analytic Helmholtz energy at the
tensile instability.
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z(T-I) )

FIG. 6. (a) Graphical solution to the constant-correlation-radius condition
[Eq. (38)]. (b) Spinodal line (#, — « ) and constant correlation radius
lines in the vicinity of a tensile instability, in temperature-volume coordi-
nates.

In previous publications we analyzed the case where
the tensile instability isochore admits a metastable solution
both above and below T *: there followed a variety of highly
unusual phenomena, such as spinodal retracing, ' nonanaly-
tic density maxima,' and a metastable phase transition? with
entropy and thermal expansion coefficient discontinuities
but no volume change. In this paper we address the case in
which the limiting isochore, as all other isochores, has no
metastable analytic continuation below the spinodal tangen-
cy temperature. The only mathematical difference between
both models is the sign of the expansion coefficient z. This
means that all of the purely mathematical relationships,
such as the exponents characterizing the divergence of
K7, @,, and ¢, are common to both types of behavior. Also
common to both cases is the necessary existence of an a,<0
region in the vicinity of the spinodal branch along which the
tensile strength increases with temperature.

A single-branched limiting isochore, however, does not
give rise to discontinuities in entropy or thermal expansion
coefficient. Instead, a mathematically defined metastable so-
lution to the condition a, = 0 exists: the density maximum
extends from the instability into the low temperature, high
pressure, high density region. The simplicity of the PVT fea-
tures associated with the single-branched limiting isochore
case is in sharp contrast with the variety of unusual phenom-
ena which necessarily accompany double-branched limiting
isochore behavior. Perhaps more significantly, the single-
branched limiting isochore case reproduces all of the essen-
tial features of the water-specific model of Speedy,®’ ob-

tained by curve-fitting experimental PVT properties to a vol-
ume-explicit pressure expansion about a generic spinodal
point.

Now that the connection between density extrema and
loss of tensile strength has been firmly established>%” a
number of interesting questions arise naturally:

(1) Assuming the existence of density extrema in a giv-
en fluid, can this locus of points satisfying @, = 0 end in any
way(s) other than by intersecting a spinodal curve?

(2) In how many ways can a spinodal and a density
extrema locus intersect? What thermodynamic conse-
quences follow in each case?

(3) Can a spinodal locus bounding the superheated, su-
percooled, and simultaneously superheated and supercooled
states®’ exist independently of density anomalies?

In the present paper, as well as in our previous' analy-
sis of the double-branched limiting isochore case, we have
used an essentially classical thermodynamic analysis to de-
rive general conclusions and to pose equally general and fun-
damental questions on the behavior of metastable liquids.
The insights gained from this approach will, it is hoped, con-
tribute to dispel the widespread attitude according to which
concepts such as metastable states and thermodynamically
defined limits of stability are relegated to the unglamorous
status of “mean field approximations” and hence ignored
altogether. We recognize that a thermodynamically defined
spinodal curve may indeed be an idealization: it is certainly a
useful one. Is it, after all, possible (indeed, desirable) to pos-
tulate a scientific theory dealing with the macroscopic world
of everyday experience that is free of idealizations?
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APPENDIX: DENSITY EXTREMA IN 7,s AND P,v
PROJECTIONS

We first write

dP — (ﬁ) dv+ L. % g (A1)
v /s ¢, Ky
which implies, along a density extrema locus,
.~ (5)
(av Pext v s‘ (A2)
Similarly, with 4 denoting specific enthalpy,
/K
dp = (175) dv + [—a”—T—]dh (A3)
v /a ¢, +va,/K;
and, therefore,
(), -2 s
W /ow  \O0/h (A9
Finally, in terms of the chemical potential, we have
apP a,/K
dP = (—) dv + [—#]d AS
v/, va,/K, —s (A3)

or, along a density extrema locus,
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(&)= (). a6
O Jpent /.

Equations (27), (A2), (A4), and (A6) imply, therefore,
that a density extrema locus is an envelope of isotherms,
isentropes, isenthalpics, and constant chemical potential
curves, in (P,v) coordinates. In order to derive the corre-
sponding (T,s) properties, we write

ds=(is—) dT + <2 dv (A7)
aTr/, K,
or, along a density extrema locus
(_31) = (is_) _ (A8)
a T Pext a T v
In terms of 4, we have the expansion
ds = (ﬁ) dT — [——“L—]dh (A9)
T/ 1-Ta,
and, therefore,
(ﬁ) _ (_31) _ (A10)
aT Pext a T h
Finally, in terms of u,
Js
d =(__) AT — a,d (AlD)
*=\or u POt

which implies
(ﬂ) -~ (ﬁ)
aT Pext 3 T I '

Equations (30), (A8), (A10), and (A12) imply, therefore,
that a density extrema locus is an envelope of isobars, iso-
chores, isenthalpics, and constant chemical potential curves,
in (7T,s) coordinates.
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