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A set of Lindemann measures, based on positional deviations or return distances, defined with
respect to mechanically stable inherent structure configurations, is applied to understand the
solid-liquid phase transition in a Lennard-Jones-type system. The key quantity is shown to be the
single-particle return distance-squared distribution. The first moment of this distribution is related to
the Lindemann parameter which is widely used to predict the melting temperature of a variety of
solids. The correlation of the single-particle return distance and local bond orientational order
parameter in the liquid phase provides insights into mechanisms for melting. These generalized
Lindemann measures, especially the lower order moments of the single-particle return distance
distribution, show clear signatures of the transition of the liquid from the stable to the metastable,
supercooled regime and serve as landscape-based indicators of the thermodynamic freezing
transition for the Lennard-Jones-type system investigated. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2737054�

I. INTRODUCTION

The Lindemann melting rule states that a solid melts
when the dimensionless Lindemann parameter �L, defined as
the ratio of the root mean square �rms� fluctuation in atomic
positions about the equilibrium lattice positions and the near-
est neighbor distance d, exceeds a critical value.1–4 This
threshold value of the Lindemann parameter is usually taken
as 15% but may vary between 5% and 20% depending on
factors such as crystal structure, nature of interparticle inter-
actions, and magnitude of quantum effects.5–9 In a classical
solid, the equilibrium geometry of the lattice will be a me-
chanically stable, translationally ordered structure, and the
Lindemann melting criterion can be thought of as the me-
chanical stability limit of this structure. Since the rms fluc-
tuation in atomic positions can be estimated from measurable
physical properties of the solid, such as the Debye tempera-
ture and the elastic constants, the Lindemann melting rule
allows one to predict the melting temperature Tm on the basis
of solid state properties. Despite an overall accuracy of only
20%–30%, it is at present the only available predictive tool
for understanding solid-liquid coexistence conditions for a
range of transition metals and geologically important miner-
als with very high melting temperatures.

While the Lindemann rule focuses on the ensemble av-
erage of the amplitude of fluctuations for all atomic posi-
tions, it is evident that a corresponding local mean square
displacement �MSD� can be defined for individual atoms and
can be readily obtained from computer simulations. For dis-
tinct types of atoms at distinct locations in the crystallo-

graphic unit cells, the local MSD values can be obtained
from atomic Debye-Waller factors extracted by fitting x-ray
diffraction data. Studies on inhomogeneous systems, such as
clusters, solid surfaces, and proteins, indicate that MSD val-
ues are strongly location dependent and are typically much
larger for surface, rather than bulk or core, atoms.10–14 Melt-
ing of crystalline solids is typically initiated at these disor-
dered surface sites, and substantial superheating of crystals
can be achieved only by suppressing surface melting. Com-
puter simulations under periodic boundary conditions allow
one to model superheated solids and suggest that one of the
atomic level mechanisms for melting is that the nucleation of
the liquid phase takes place at atomic sites with unusually
large values of the local mean square displacement.15

The above results suggest that developing a set of Lin-
demann measures, based on positional deviations from me-
chanically stable configurations, will be useful for under-
standing not only melting, but also freezing and related
phenomena such as supercooling and the glass transition.
Such measures are most conveniently defined in the context
of the energy landscape paradigm which focuses on the to-
pographic properties of the multidimensional potential en-
ergy function U�x�, where x is the 3N-dimensional position
vector of the N-particle system.16–19 Inherent structures or
minima of U�x� correspond to mechanically stable particle
packings with the global minimum of U�x� being the per-
fectly ordered crystal lattice. Any instantaneous configura-
tion sampled from a suitable ensemble can be quenched to
the corresponding inherent structure using a local steepest
descent �SD� minimization. The set of instantaneous struc-
tures connected by SD mappings to the same minimum con-
stitute the basin of the corresponding inherent structure. Ina�Electronic mail: charus@chemistry.iitd.ernet.in
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the present work, we define a set of Lindemann measures in
the context of inherent structure analysis and study their be-
havior for the solid and liquid phases of a modified Lennard-
Jones system. We focus, in particular, on understanding the
atomic level changes in the solid and liquid associated with
the melting and freezing processes, respectively.

A generalization of the Lindemann ratio which can be
applied in both the solid and liquid phases is first
considered.20 If the atomic positions in an instantaneous con-
figuration and the corresponding inherent structure are de-
noted by the 3N-dimensional vectors x��x1 , . . . ,xN� and q
��q1 , . . . ,qN�, respectively, then the configurational return
distance � of a particular configuration in the ensemble is
given by

�2 = �1/N��x − q�2. �1�

When the system is in the defect-free crystalline phase, all
SD mappings at constant volume will lead to the global
minimum and the ensemble average of �2 will be equal to
the mean square displacement of atoms relative to the equi-
librium lattice positions. For solids, therefore, 	
�2� /d will
correspond to the original definition of the Lindemann pa-
rameter �L. The above inherent structure-based definition
can, however, be readily extended to the liquid phase where
the inherent structures correspond to amorphous or disor-
dered packing structures. In the case of liquids, the configu-
rational return distance 	
�2� can be regarded, at a given
temperature, as a measure of the mean size of excursions
within basins of inherent structures. Here, 
¯� denotes an
average over configurations calculated at a given thermody-
namic state point. If vibrations around the local minima are
harmonic, then at low temperatures, �2 will be proportional
to temperature along an isochore for classical systems. A
sharp rise in 
�2� is observed on melting.20 In the case of
supercooled liquids, the temperature dependence of 
�2� car-
ries a signature of a kinetic transition preceding the heat
capacity changes associated with the glass transition.21 We
define a dimensionless return distance as

�� = �1/3	
�2� , �2�

where the number density � is used to define a characteristic
interparticle spacing. A distribution of squared configura-
tional return distances F��2� can be also defined.

If the deviation in the position of an atom i from its
position in the corresponding inherent structure is denoted by
the vector �i=xi−qi, then one can define the normalized
single-particle squared return distance distribution ���2� by
considering the �i

2 values of all atoms from a sampled set of
M configurations. The means of the squared single-particle
and configurational return distance distributions will coini-
cide,


�2� = �
0

�

�2���2�d��2� = 
�2� . �3�

The ���2� distribution explicitly displays the variation in the
square of the atomic return distance while this information is
configurationally averaged when constructing the F��2� dis-
tribution. The self-averaging character of the F��2� distribu-

tion is reflected in its Gaussian form, while the ���2� distri-
bution is strongly asymmetric or skewed in both the liquid
and solid phases.20 Since this single-particle return distance
displays the variation in the instantaneous local environ-
ments of particles, it is useful to characterize it using mo-
ments of the distribution. The raw moments of the distribu-
tion are defined as

mk = �
0

�

��2�k���2�d��2� , �4�

where m1 corresponds to 
�2�. The second, third, and fourth
central moments are defined in terms of the ml as

�2 = − m1
2 + m2, �5�

�3 = 2m1
3 − 3m1m2 + m3, �6�

�4 = − 3m1
4 + 6m1

2m2 − 4m1m3 + m4. �7�

A cumulative probability distribution for the single-particle
return distance is also defined as

���2� = �
0

�2

��r2�d�r2� . �8�

Using isothermal-isobaric �NPT� Monte Carlo simula-
tions, we study the solid and liquid phases of a system with
a pairwise-additive potential energy function, where the pair
interactions are a smoothed version of the 12-6 Lennard-
Jones potential, originally introduced by LaViolette and
Stillinger.20 The behavior of the Lennard-Jones system at
melting seems fairly typical of systems where interparticle
interactions are characterized by strong, short-range repul-
sions and relatively weak, isotropic attractions. This is re-
flected by the fact that the Lindemann melting rule is widely
used for a range of systems though there are quantitative
differences between different categories of interaction poten-
tials and crystal structures.1–15 The NPT ensemble is appro-
priate for studying phase transitions since it ensures that the
simulation cell contains only a single phase and there are no
phase boundaries or interfaces. The system volume in such
simulations will show small fluctuations around the mean
value corresponding to the equilibrium density. Therefore an
instantaneous configuration will be characterized by 3N+1
variables, i.e., the system volume V in addition to the particle
coordinates. When locating the inherent structure associated
with a given instantaneous configuration, local minimiza-
tions are performed with respect to the particle coordinates,
keeping the volume constant. Note that it is possible to de-
fine isobaric quenches22 rather than the isochoric quenches
used here. The latter are, however, more appropriate in this
context since we wish to obtain information on positional
deviations from mechanically stable structures at the ob-
served density.

The paper is organized as follows. The computational
details are summarized in Sec. II. Section III discusses the
results and Sec. IV contains the conclusions.
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II. COMPUTATIONAL DETAILS

A. Monte Carlo simulations

The reduced form of the smoothed 12-6 Lennard-Jones
�SLJ� pair potential potential uSLJ�r� is defined as20

u�r� = A
�1

r
�12

− �1

r
�5�exp�1/�r − a�� for 0 � r � a ,

�9�

u�r� = 0 for r 	 a , �10�

where r is the interparticle separation. The parameter a fixes
the range of the interaction, so that the attraction is smoothly
truncated to zero at r=a. The parameters A and a are chosen
to reproduce the position and depth of the 12-6 Lennard-
Jones potential minimum and are thus set to A=6.767 441
and a=2.464 918 32. The derivatives of the potential to all
orders are continuous at the cutoff which makes it particu-
larly suitable for local minimizations. As in the case of the
LJ system, the natural length scale is set by the distance 
 for
which u�
�=0 and the energy scale is set by � corresponding
to the well depth. For the present investigation, both 
 and �
are set to unity. All quantities reported in this paper are in
reduced units of 
 and �.

For the SLJ system, a cubic simulation cell with 256
particles and periodic boundary conditions was used in
isothermal-isobaric Monte Carlo �NPT-MC� simulations.23

No spherical potential cutoff was required for the densities
and simulation cell sizes used here. Two types of MC moves
were performed: �i� particle moves, in which a single ran-
domly chosen particle was displaced, and �ii� volume moves,
in which only the simulation cell volume was varied while
the particle positions were correspondingly scaled. Volume
moves typically constituted 7.5% of trial moves. Acceptance
ratios for volume and particle moves were kept at approxi-
mately 50%. Production run lengths for the simulations var-
ied between 1�106 and 8�106 configurations depending on
the phase and the degree of metastability, e.g., for super-
cooled liquid states, much longer run lengths were required,
in addition to repeated equilibration runs.

The NPT-MC simulations were performed for both solid
and liquid phases along the P=0.6752 and P=2.2417 isobars
and the T=0.7 isotherm. The simulations in the solid phase
were initiated at a low temperature �T=0.1� with an ordered
face-centered cubic �fcc� structure. Unlike the LJ system, the
equilibrated SLJ system at zero temperature has a fcc struc-
ture for a range of densities where the pressure is positive.24

Along each isobar, the simulation temperatures were gradu-
ally increased until the superheated solid spontaneously
melted. The liquid phase formed by spontaneous melting was
equilibrated and formed the initial state point for the liquid
phase isobar. The initial configurations for the solid and liq-
uid phase isotherms at T=0.7 were taken from the P
=0.6752 isobar. The isobar and isotherm pressures and tem-
perature, respectively, were chosen such that the known
solid-liquid coexistence pressures for the Lennard-Jones

system7 could be used as input for the thermodynamic per-
turbation theory estimates of the coexistence conditions for
the SLJ system.

Monte Carlo simulations of the LJ system with a spheri-
cally truncated pair interaction and long-range corrections
were required in order to estimate the solid-liquid coexist-
ence conditions, as discussed in the next section.

B. Obtaining solid-liquid coexistence conditions

Since the melting line of the 12-6 LJ system is well
studied,7 we treat the Lennard-Jones system as a reference
and use thermodynamic perturbation theory to locate solid-
liquid coexistence conditions for the SLJ system.25 The per-
turbation parameter 
 is defined by the equation

U�
,x,V� = ULJ�x,V� + 
�USLJ�x,V� − ULJ�x,V�� , �11�

where U is the configurational energy of an N-particle sys-
tem occupying volume V with positions described by vector
x. The NPT ensemble partition function of the perturbed
system is

QNPT�
� =
�P

�3NN!
� dVdx exp�− ��PV + U�
,x,V���

=
�P

�3NN!
ZNPT�
� , �12�

where �=1/kBT is the inverse temperature and �
= �h2 /2�mkBT�1/2 is the thermal de Broglie wavelength.26–29

The Gibbs free energy of the perturbed system is given by

G�
� = − kBT ln QNPT�
� . �13�

The partial derivative of G�
� with respect to 
 is given by

X = � �G

�

�

T,P
= �1/ZNPT�
�� � dVdx�USLJ�x,V�

− ULJ�x,V��exp�− ��PV + U�
,x,V��� . �14�

For a fixed number of molecules in phase �, the total differ-
ential of G is

dG� = − S�dT + V�dP + X�d
 , �15�

where S� and V� are the entropy and volume, respectively.
Let the melting temperature of the reference Lennard-Jones
system at a pressure P be denoted by TLJ. The shift in melt-
ing temperature Tm with 
 will be given by a Clapeyron-type
first-order differential equation of the form

d ln Tm

d

=

Xliq − Xsol

Hliq − Hsol
. �16�

It would be possible, in principle, to use Gibbs-Duhem inte-
gration to apply the above equation between 
=0 and 1 to
obtain the melting temperature TSLJ of the smoothed
Lennard-Jones system.30 In practice, the difference between
the LJ and SLJ systems is negligible except for the presence
of a long-range attractive interaction in the reference system.
We can therefore use linear perturbation theory to evaluate
TSLJ as
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ln�TSLJ

TLJ
� =


X�LJ,liq − 
X�LJ,sol


H�LJ,liq − 
H�LJ,sol
, �17�

where the ensemble averages on the right hand side are
evaluated for the Lennard-Jones system. One can similarly
show that the corresponding perturbation theory estimate for
the solid-liquid coexistence pressure PSLJ of the SLJ system
will be

PSLJ = PLJ +

X�LJ,liq − 
X�LJ,sol


V�LJ,liq − 
V�LJ,sol
. �18�

The melting line of the LJ system was taken from the
results of Agrawal and Kofke.7 At three selected coexistence
points, a NPT ensemble Monte Carlo simulation of a 343
particle Lennard-Jones system was carried out using rhombic
dodecahedral boundary conditions to estimate the perturba-
tion theory parameters defined in the above two equations,
i.e., 
X�LJ, 
H�LJ, and 
V�LJ in the solid and liquid phases.
Computational details regarding the Monte Carlo simulations
are given elsewhere.31 The three points along the melting
line are shown in Table I which also lists the values of the
perturbation theory parameters, as defined in Eqs. �16� and
�17�, at these state points. Based on these parameters, solid-
liquid coexistence conditions for the SLJ system have been
computed along the P=0.6752 and 2.2417 isobars and the
T=0.7 isotherm. Note that for the T=0.7 isotherm, we used
the �T=0.7042, P=0.2034� point along the melting line of
the Lennard-Jones system.

C. Locating inherent structures

From the Monte Carlo runs for the 256 particle SLJ sys-
tem, a set of instantaneous configurations was sampled at
equispaced intervals and used to initiate isochoric quenches
corresponding to local minimizations of the configurational
energy. For the liquid phase simulations, 800 configurations
were sampled for inherent structure analysis, while for the
solid phase 100–200 configurations were found to be suffi-
cient. Steepest descent minimization techniques are typically
computationally inefficient and therefore other gradient-
based techniques are commonly used.32 A recent study dem-
onstrates that the statistical properties of inherent structures
are not significantly affected by the choice of minimization
algorithm.33 In this work, local minimizations were per-
formed using the limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm.34 The minimization procedure
was considered to have converged when the rms gradient of
the potential energy was less than 10−4 in reduced units.

III. RESULTS AND DISCUSSION

We present our results on the behavior of the Lindemann
measures in the solid and liquid phases in this section. The
temperature and pressure dependences of ensemble-averaged
dimensionless or scaled return distance ��, defined in Eq.
�2�, are examined in Sec. III A. We show that �� is sensitive
to the transition of the liquid from the stable to the super-
cooled region, suggesting that Lindemann measures may be
used to define freezing criteria in addition to the well-known
melting criterion. In Sec. III B, we consider the behavior of
the single-particle return distance distributions and their sen-
sitivity to structural changes accompanying supercooling and
superheating. In Sec. III C, we examine the insights that can
be obtained from the single-particle return distance distribu-
tion on mechanisms of melting. Since we compare the be-
havior of the Lindemann measures in the solid and liquid
phases, we have subscripted various quantities by s or l to
denote the solid or liquid phase, respectively, wherever
necessary.

A. Return distances of inherent structures

Figure 1 demarcates the temperature and pressure ranges
over which we study the solid and liquid phase behaviors of
the SLJ system. The solid-liquid coexistence conditions
along the isobars and isotherms, as obtained from thermody-
namic perturbation theory, are also shown in Fig. 1. Along
the isobars, the �s�T� curves for the solid phase terminate
when the solid spontaneously melts. The density of the liquid
increases smoothly with cooling, with no apparent signature
at the thermodynamic freezing temperature, until a tempera-
ture approximately 15% below melting, when an abrupt rise
in density signals crystallization. The solid-liquid coexist-
ence pressure along the T=0.7 isotherm is estimated to be
1.09. Along this isotherm, �l�P� increases smoothly with
compression until, at P=3.1, there is a sharp rise in density
indicating crystallization to a defective solid structure.

The behavior of the scaled rms return distance �� along
the P=0.67 and P=2.24 isobars and the T=0.7 isotherm is
shown in Fig. 2. In the solid phase, �s� rises slowly with
increasing temperature or decreasing pressure until a thresh-
old value of approximately 0.15 is reached, above which the
solid is not mechanically stable and melts during the course
of the simulation. Note that this threshold value fits rather

TABLE I. Perturbation theory parameters required in order to estimate the solid-liquid coexistence conditions for the smoothed Lennard-Jones �SLJ� system.
The parameters were obtained as ensemble averages from NPT-MC simulations of the Lennard-Jones solid and liquid at three state points along the melting
line. The ensemble average of the configurational energy difference between the LJ and SLJ systems is denoted by 
X�= 
USLJ−ULJ�. All extensive quantities,
e.g., volume �V�, enthalpy �H�, and X are reported in reduced units for the 343 particle simulation cell for the Lennard-Jones system �see Sec. II B�. Subscripts
on averages indicate the phase.

Tm
LJ Pm

LJ 
H�s 
H�l 
V�s 
V�l 
X�s 
X�l Tm
SLJ Pm

SLJ

0.7430 0.6752 −2254.5 −1857.9 352.1 396.6 385.6 345.0 0.67 0.6752
0.8660 2.2417 −1695.7 −1261.9 345.6 383.9 395.0 357.1 0.79 2.2417
0.7042 0.2034 −2422.1 −2029.1 354.7 403.0 382.1 339.2 0.7042 1.09
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well with the original definition of the Lindemann criterion.
In order to provide an estimate of the statistical error of the
scaled return distance ��, we compute the error associated
with 
�2�= 
�2�, defined in Eq. �2�, using the expression
��
�4�− 
�2�2� / �MN��1/2, where M is the number of Monte
Carlo configurations and N is the number of particles in the
simulation cell. The error is of the order of at most 3% for
the liquid phase simulations and less for the solid phase. The
Lindemann parameter in the solid state is known to have a
finite-size dependence due to the suppression of low wave
vector phonon modes though this does not appear to be a
very large effect.9 The finite-size effects should be approxi-
mately constant over the temperature and pressure ranges
studied here. Therefore the conclusions regarding the behav-
ior of Lindemann measures in the solid and liquid phases
presented here should be robust with respect to finite size
and statistical error.

In the liquid phase along the P=0.67 isobar, the �l� value
decreases almost linearly with temperature in the stable liq-
uid regime. There is, however, a distinct change in slope of
the �l��T� curve once the system crosses the thermodynamic
freezing transition. Crystallization is accompanied by a sharp
drop in the �l� value. In the neighborhood of the thermody-
namic solid-liquid coexistence temperature, a similar change
in slope can be seen for the �l��T� curve for the P=2.24
isobar and the ���P� curve for the T=0.7 isotherm. Thus, in
the liquid phase, the �l� curves show at least three distinct
regions corresponding to �i� the stable liquid, �ii� the liquid in
the neighborhood of the thermodynamic phase transition,
and �iii� the supercooled, metastable liquid. Region �ii�,

where the slope of the �l��T� curve changes sharply, is inter-
esting because it suggests that the behavior of the general-
ized Lindemann parameter in the liquid phase can provide a
signature of proximity to the freezing transition though it is
not an exact predictor of the thermodynamic solid-liquid co-
existence point.

In addition to the above three regions, the �l� curves for
the P=2.24 isobar and the T=0.7 isotherm show a plateau
just prior to crystallization. In this regime, �l� remains almost
constant with compression or cooling even though the den-
sity decreases smoothly �cf. Figs. 1 and 2�. This suggests that
the particle packing is such that the crystalline phase cannot
readily nucleate at these densities, even with repeated Monte
Carlo runs. Crystallization only takes place on further in-
crease in pressure or decrease in temperature.

Figure 3 compares the ensemble-averaged configura-
tional energy �
U�� and the inherent structure energy �
Uq��
as a function of temperature and pressure. Also shown is the
quantity 
Uh�= 
Uq�+1.5NkT, which should be identical to

U� if the vibrations about the inherent minimum are har-
monic. In the solid phase, all three quantities increase with
increasing temperature or decreasing pressure. 
Uh� is con-
sistently slightly higher than 
U� which is expected on the
basis of anharmonic corrections to the vibrational density of
states. In the liquid phase, the changes with temperature or
pressure of 
U�, 
Uq�, and 
Uh� are almost linear, except in
the very low pressure region of the T=0.7 isotherm, where
��� /�P�T is fairly large �see Fig. 1�b��. There is a sharp drop
in the configurational energies on solidification. Interestingly,
in the case of the liquid, for the P=0.67 isobar and for low

FIG. 2. Scaled rms single particle return distance, ��=�1/3	
�2�, as a func-
tion of �a� temperature T along the P=0.6752 and P=2.2417 isobars and �b�
pressure P along the T=0.70 isotherm. The arrows show the solid-liquid
coexistence conditions, as in Fig. 1.

FIG. 1. Number density � as a function of �a� temperature T along the P
=0.6752 and P=2.2417 isobars and �b� pressure P along the T=0.70 iso-
therm. The arrows show the coexistence conditions at �T=0.79, P=2.24�,
�T=0.67, P=0.67�, and �T=0.7042, P=1.09�.
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pressures along the T=0.7 isotherm, 
Uh� is lower than 
U�
which is the opposite of the behavior seen in the case of
solids. For the P=2.24 isobar and the high pressure regime
of the T=0.7 isobar, 
U� is approximately equal to 
Uh�.

Our results indicate at least for the SLJ model that the
generalized Lindemann parameter corresponding to
ensemble-averaged rms return distance is fairly sensitive to
the changes in liquid structure as it transits between the
stable and supercooled regimes. This is a remarkable result
since landscape-based criteria for freezing have not been de-
termined so far. This behavior of the Lindemann parameter is
an interesting contrast to the behavior shown by other ob-
servable quantities, such as the number density and the mean
configurational energy, as well as by landscape properties,
such as the average inherent structure energy.

B. Single-particle return distance distribution

In this section, we consider the properties of the single
particle return distance distribution. This Lindemann mea-
sure contains information about the local environments of
particles and therefore is expected to be sensitive to changes
associated with superheating of solids or supercooling of liq-
uids.

Figure 4 compares the configurational and single-particle
return distance distributions for the solid and liquid phases
under the same temperature and pressure conditions �T=0.7,
P=0.6752� in the neighborhood of the freezing transition.
The single-particle return distance distribution ���2� is a
highly skewed distribution in both the phases. In contrast, the
configurational return distance distribution F��2� is a fairly
narrow and almost symmetric distribution indicating that the
�2 values vary little between different snapshots of the liquid
or solid, in comparison to the spread of deviations of indi-
vidual particles from their locations in the nearest inherent
structure. This qualitative difference is expected due to the
self-averaging involved in the global distribution F��2�.
While the shapes of the ���2� distributions of the liquid and
solid appear very similar, there is an order of magnitude
difference in the range of �2 values accessed by particles in
the two phases.

Inspection of the ���2� distributions over the range of
pressure and temperature studied by us indicated a very large
variation in the range of the distributions but no qualitative
change in the features, even between distributions belonging
to the solid and liquid phases. In order to make a quantitative

FIG. 3. Comparison of 
U�, 
Uq� and 
Uh�= 
Uq�+1.5NkT along �a� the P
=0.6752 isobar, �b� the P=2.2417 isobar, and �c� the T=0.70 isotherm. The
symbols for the solid phase are 
U� ���, 
Uq� ���, and 
Uh� ���. The
symbols for the liquid phase are 
U� ���, 
Uq� ���, and 
Uh� ���. All
configurational energies are given in reduced units for the 256 particle sys-
tem. The dotted vertical lines on the plots correspond to the solid-liquid
coexistence temperature Tm for the isobars and the solid-liquid coexistence
pressure Pm for the isotherm.

FIG. 4. Comparison of the single-particle and configurational return dis-
tance distributions, ���2� and F��2�, for �a� solid at T=0.70, P=0.67 and
�b� liquid at T=0.7, P=0.67. The distributions are normalized so that the
area under the curves is unity.
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estimate of the extent of shape similarity, it was therefore
necessary to scale all the distributions so that the peak height
and the mean were both unity.

The scaled ���2� distributions from liquid phase simu-
lations at all the state points studied by us were found to be
almost superimposable, despite wide variations in the mo-
ments of the distributions. Similarly all the scaled single-
particle return distance distributions from solid phase simu-
lations were found to be very similar. The liquid and solid
phase distributions, however, were distinct with the peaks or
modal values occurring at 0.2
�2� for the liquid and at
0.37
�2� for the solid. Figure 5 shows that the scaled ���2�
distributions are almost identical, given the statistical noise
in the data, for the P=2.24, T=0.8 and P=0.67, T=0.7 state
points, separately for both the solid and liquid phases. The
very low temperature, high pressure curve for the solid at
T=0.1, P=2.24 shows small differences from the high tem-
perature behavior of the solid. The high temperature T=1.3,
P=0.67 curve for the liquid is almost identical with the T
=0.7, P=0.67 liquid curve.

Distributions, intermediate in character between solid
and liquid, are seen only for supercooled liquid state points
along the P=2.24 isobar and T=0.7 isotherm for which the
�s� values show a plateau. Figure 6 illustrates the differences
in the shape of the ���2� with compression along the T

=0.7 isotherm. Along this isotherm, the solid-liquid coexist-
ence pressure is 1.09. The scaled distributions for the stable
and metastable liquid at P=1.0 and P=1.5, respectively, are
essentially identical. The supercooled states at P=2.5 and
P=3.1, which have almost the same �s� values, have very
similar return distance distributions which deviate somewhat
from the equilibrium liquid state distribution. The defective
solid formed on further compression has a peak at 0.37
�2�
characteristic of the solid phase but is not identical with the
distribution of the perfect fcc solid at the same pressure.

An alternative approach to characterizing and comparing
���2� distributions is to compute the lower order central mo-
ments of the distribution, as defined in Eqs. �3�–�6�, in addi-
tion to the first moment m1= 
�2�. The behavior of these mo-
ments of the distribution as a function of temperature �at P
=0.67 and 2.24� and as a function of pressure �T=0.7� is
shown in Fig. 7 for the solid and Fig. 8 for the liquid.

We first consider the results for the solid phase presented
in Fig. 7. It should be noted that in order to show the varia-
tion of the moments of different order on the same graph, the
numerical values had to be scaled up by factors which differ
by several orders of magnitude. The higher the order of the
moment, the more rapid its variation with temperature or
pressure, especially as the metastability limit of the solid is
approached.

Figure 8 shows the moments of the single-particle return
distance distribution for the liquid phase. The range of varia-
tion of moments of different order is not as large in the liquid
phase as in the solid and therefore no scaling was required in
order to represent them on the same logarithmic plot in Fig.
8. It is remarkable that in the liquid phase, the slope of all the
�k�T� or �k�P� curves changes close to the thermodynamic
solid-liquid coexistence point though not exactly at the freez-
ing point. The change in slope is more marked for the higher
order moments. Thus, in addition to the generalized Linde-
mann parameter, the higher order moments of the single-
particle return distance distribution do allow one to distin-
guish between the stable and supercooled liquid regimes.

The key features of the single particle return distance
which emerge from our study are as follows. The shapes of
the ���2� distributions in a given phase are almost superim-
posable. The solid and liquid phase distributions have dis-
tinct shapes, as characterized by the ratio of mean and modal
values as well as by the relative magnitudes of the second,
third, and fourth moments. More interestingly, the variation
in the logarithm of the moments of the distribution as a func-
tion of temperature and pressure contains a clear signature of
the transition of the system from the stable to the metastable
or supercooled regime. In this sense, the Lindemann mea-
sures do provide a criterion for freezing of the SLJ model
liquid, though there is no characteristic threshold value for
any of the moments which precisely marks the thermody-
namic solid-liquid coexistence condition.

C. Mechanisms of melting

In this section, we consider the extent to which the com-
puted Lindemann measures provide insights into the mecha-
nisms for homogeneous melting. Therefore we examine the

FIG. 5. Single-particle return distance distributions ���2� from solid and
liquid phase simulations, scaled to ensure that the maximum height and
mean of all the distributions of are unity. The vertical lines at 0.2 and 0.37
mark the peak location for the liquid-state and solid state distributions, re-
spectively, in units of 
�2�.

FIG. 6. Scaled single-particle return distance distributions from the T=0.7
isotherm showing the shift from supercooled liquid to defective crystalline
structures. The vertical lines at 0.2 and 0.37 mark the peak location for the
liquid-state and solid state distributions, respectively, in units of 
�2�.
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correlation between local order associated with a particular
atom in an instantaneous configuration sampled from the
NPT ensemble and the associated single particle return dis-
tance.

To measure the extent of local order, we use the local
bond orientational order parameters. The orientation of a
bond vector r joining an atom with a neighbor lying within a
cutoff distance Rc, relative to a space-fixed reference frame,
is denoted by the spherical polar angles ��r� and ��r�. With
each bond surrounding a given atom, one can associate a
spherical harmonic Ylm���r� ,��r��. By summing over all the
bonds connecting a given atom with its nearest neighbors,
one can define a quantity

qlm�r� = �1/nb��
i

Ylm���ri�,��ri�� , �19�

where nb is defined as the number of atoms lying within a
distance Rc=1.25re, where re is the equilibrium pair separa-
tion. To construct a rotationally invariant local order param-
eter, one then defines ql as

ql = � 4�

�2l + 1� �
m=−l

l

�qlm�2�1/2

. �20�

The q6 order parameter is large when particles sit in icosa-
hedral, face-centered cubic or hexagonally close-packed
environment.35,36 The variation of the q6 order parameter
with the extent of translational order has been explored in the

FIG. 7. The mean, m1= 
�2�, and the second, third, and fourth central mo-
ments ��2, �3, and �4� of the single-particle return distance distribution
from solid phase simulations along the �a� P=0.67 isobar, �b� P=2.24 iso-
bar, and �c� T=0.7 isotherm. Note that in order to show the variation in the
different moments on the same graph, the numerical values of m1, �2, �3,
and �4 have been scaled up by factors of 102, 104, 105, and 106, respectively.
The dotted vertical lines on the plots correspond to the solid-liquid coexist-
ence temperature Tm for the isobars and the solid-liquid coexistence pressure
Pm for the isotherm.

FIG. 8. The mean m1 and the second, third, and fourth central moments ��2,
�3, and �4� of the single-particle return distance distribution from liquid
phase simulations along the �a� P=0.67 isobar, �b� P=2.24 isobar, and �c�
T=0.7 isotherm. The dotted vertical lines on the plots correspond to the
solid-liquid coexistence temperature Tm for the isobars and the solid-liquid
coexistence pressure Pm for the isotherm.
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context of liquids and glasses. The q6 order parameter has
been found to be appropriate when considering melting of
fcc solids.31,37

Figure 9�a� shows that there is a strong negative corre-
lation between �2 and q6 in the solid phase, i.e., atoms with
large deviations from lattice positions will also tend to be in
locally disordered environments with low q6 values. The cor-
relation is strong in the solid phase regardless of temperature
or pressure, but the range of available �2 values clearly in-
creases with temperature. The noise in the correlation plot
for large values of �2 is due to poor statistics in the tail
region of the ���2� distributions. The correlation plots do not
by themselves suggest a threshold value for the �2 parameter
above which an atom may be regarded as being in a disor-
dered, liquidlike environment; it is necessary to examine the
liquid phase behavior to determine this quantity.

In the liquid phase there is no correlation between the
single particle return distance and the local order, as illus-
trated in Fig. 9�b�. The local q6 value remains essentially
constant at 0.46 for liquid state configurations reflecting the
local order typical of liquids. Thus a value of q6�0.46 may
be regarded as characteristic of a liquid.

Having identified a value of q6�0.46 as characteristic of
a liquid, one can attempt to identify atoms in a solid which
are in sufficiently disordered sites that they may be regarded
as being in “liquidlike” environments. From the correlation
plot in Fig. 9�a�, it can be seen that at T=0.5 essentially none
of the atoms can be regarded as being in a local environment
that is sufficiently disordered as to be classified as liquidlike.
On the other hand, at T=0.76, which is approximately 10%
greater than the melting temperature Tm=0.67, there is a sig-
nificant fraction of atoms with q6 less than 0.46. Given the

correlation between �2 and q6, one can see that atoms in such
disordered, liquidlike environments have � values greater
than 	0.06=0.24 which is much larger than the mean or
average value of 	
�2�=0.164 at this temperature. Thus a q6

value of 0.46 or a local Lindemann value of 0.24 can be
taken as setting the threshold value for the extent of local
disorder for an atom in a solid. Atoms in more disordered
environments can be classified as liquidlike. Interestingly, in
an earlier molecular dynamics study of melting mechanisms
in a Lennard-Jones-type system,15 an atom in superheated
solid was classified as liquidlike if the local Lindemann pa-
rameter exceeded a critical value of 0.22 and was identified
as providing a nucleation site for growth of the liquid phase
in the metastable solid phase, which is consistent with the
results of the present study.

An alternative approach for determining the threshold
value of the local Lindemann parameter is to consider the
peak of the single-particle return distance distribution at
melting for the liquid phase. As discussed in Sec. III B, for
any liquid state, the scaled single particle distributions have a
peak close to 0.2
�2�. For a solid in the vicinity of the melt-
ing transition, the atoms in the solid which have return dis-
tances close to the 0.2
�2� values of the liquid at coexistence
can be classified as liquidlike. We illustrate this for the sys-
tem along the P=0.67 isobar. For the liquid at this pressure,
the value 	
�2�=0.5 at T=0.7 �close to the melting tempera-
ture� and the peak in the ���2� distribution occur at �2

=0.1. The portion of the liquid state ���2� distribution for
�2�0.2 is shown in Fig. 10. We also consider the fraction of
atoms in a superheated solid that is likely to be in disordered,
liquidlike environments by plotting 1−���2� which provides
the probability of finding an atom with rms displacement
greater than �2, where the distribution ���2� is defined in Eq.
�7�. For the P=0.67 isobar, these distributions for the solid
are shown at T=0.7 and T=0.76 in Fig. 10. At T=0.76 which
lies close to the metastability limit of the solid, one can see a
small but significant probability of sampling atoms with �2

values greater than 0.1. While at T=0.76 this probability may
be too small to result in homogeneous nucleation of the liq-
uid phase, it is not surprising that a slight increase in tem-
perature results in spontaneous melting of the solid during
the course of the simulation.

FIG. 9. Correlation between local order parameter �q6� and the square of the
single-particle return distance ��2� for �a� solid and �b� liquid.

FIG. 10. Overlap of the 1−���2� distribution of the solid at T=0.7 and 0.76
and the ���2� distribution of the liquid at T=0.7 along the P=0.67 isobar.
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IV. CONCLUSIONS

A generalized set of Lindemann measures, based on the
positional displacements of atoms from their locations in the
corresponding mechanically stable inherent structures, has
been studied in the neighborhood of the melting transition
for a Lennard-Jones-type solid. A key conclusion of this
study is that the most effective Lindemann measure for un-
derstanding the solid-liquid transition is the single-particle
return distance distribution ���2�. The utility of this distri-
bution in understanding melting and supercooling goes well
beyond that of the conventional Lindemann parameter which
is proportional to the square root of the first moment of the
���2� distribution in the solid phase.

The shapes of the ���2� distribution, scaled to have unit
height and mean, are distinct in the solid and liquid phases,
with the liquid phase distribution being more strongly asym-
metric and long tailed. The temperature and pressure depen-
dences of the moments of this distribution in the liquid state
provide a useful marker for the thermodynamic solid-liquid
coexistence point. For example, the temperature or pressure
dependence of the lower-order moments of this distribution
in the liquid phase, along an isobar or isotherm, respectively,
shows a significant change in slope in the vicinity of the
thermodynamic freezing point. Thus our examination of the
classical SLJ model indicates that the generalized Linde-
mann measures can provide a freezing criterion, in addition
to the melting criterion, based on the properties of inherent
structures. While phenomenological freezing criteria, such as
the Hansen-Verlet rule, are well established, this is, to our
knowledge, the first example of a potential energy landscape-
based criterion for the thermodynamic freezing transition.

The correlation of the square of the single particle return
distance ��2� with local order metrics �q6� provides some
interesting insights into mechanisms of melting. The correla-
tion of �2 with q6 is strong in the solid phase but is virtually
zero in the liquid phase. The mean value of q6 in the liquid
phase allows one to define a lower bound on the value of the
local Lindemann parameter of atoms in the solid phase, such
that if this value is exceeded an atom may be classified as
liquidlike. This lower bound agrees well with the results of
other studies of bulk and surface melting.

The identification of energy landscape properties which
distinguish between the stable and supercooled liquid behav-
ior is an unexpected outcome of this study and deserves fur-
ther investigation. The utility of the Lindemann measures in
understanding the solid-liquid transition for the SLJ system
suggests that these measures deserve further investigation for
other many-body models to establish generality. This study
also indicates that analogous quantities may be of interest for
more complex order-disorder phase transitions involving

self-assembly of ordered structures, for example, sol-gel
transitions in lipid bilayers, protein folding, and protein ag-
gregation.
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