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We investigate the effect of adding nonpolar solutes at atmospheric pressure on water’s temperature
of maximum density, isothermal compressibility, and isobaric heat capacity, using a statistical
mechanical model of water solutions �H. S. Ashbaugh, T. M. Truskett, and P. G. Debenedetti, J.
Chem. Phys. 116, 2907 �2002��. We find that the temperature of maximum density increases with
solute hydrophobicity, as characterized by its size, and decreases with its van der Waals attractive
parameter a, in agreement with experiment. We predict similar trends for the addition of solutes on
the isothermal compressibility and isobaric heat capacity: solute hydrophobicity causes an upward
shift in water’s anomalies, whereas dispersive interactions as measured by the solute’s van der
Waals attractive parameter shift the anomalies to lower temperatures. The locus along which the
competing contributions of solute size � and interaction strength a to the shift in water’s response
functions balance each other obeys the scaling relationship �6�a. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2075127�
I. INTRODUCTION

Aqueous solutions of nonpolar species are a subject of
considerable scientific interest, in no small measure on ac-
count of the central role that hydrophobic hydration is be-
lieved to play in biological self-assembly phenomena.1–3 Re-
cent theoretical work has linked many of the distinctive
features of hydrophobic hydration, such as the minimum
with respect to temperature in the solubility of nonpolar sol-
utes �believed to play a role in the cold denaturation of pro-
teins�, to the temperature of maximum density �TMD� of pure
liquid water at 4 °C.4–13 It is therefore of interest to investi-
gate the effect of added solutes on the TMD. More generally,
a systematic understanding of the effects of solutes on wa-
ter’s thermodynamic anomalies, such as the pronounced in-
crease of the isobaric heat capacity and the isothermal com-
pressibility upon cooling,14 is of relevance to atmospheric
physics,15,16 plant physiology,17 water pollution,18 and
self-assembly.1–3 In this paper we investigate theoretically
the effect of nonpolar solutes on water’s response functions
�coefficient of thermal expansion, isobaric heat capacity, and
isothermal compressibility� using a simple statistical me-
chanical theory of water19 and of its mixtures with nonpolar
solutes.4 This theory has been shown to reproduce water’s
equation-of-state anomalies19 and the thermodynamic signa-
tures of hydrophobic hydration.4

To illustrate the subtleties of the phenomena under in-
vestigation, consider a dilute mixture of a solute �s� in water
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�w�. For isobaric changes in temperature in the vicinity of
pure water’s temperature of maximum density �TMD

0 �, the
partial molar volumes can be written as

�̄w�T� = �̄w�TMD
0 � +

�

2
�T − TMD

0 �2, �1�

�̄s�T� = �̄s�TMD
0 � + ��T − TMD

0 � , �2�

where ��0 �the volume is a minimum at the TMD with re-
spect to isobaric temperature changes�. The temperature de-
pendence of the mixture’s molar volume at fixed pressure
and composition is given by

� ��

�T
�

P,xs

= xw��T − TMD
0 � + xs� , �3�

where xw and xs are the water and solute mole fractions,
respectively. Setting the derivative to zero, solving for T and
differentiating with respect to xs, we obtain, in the limit of
infinite dilution, the relationship

� �TMD

�xs
�

P

�

= −
�

�
. �4�

Thus, if the solute’s partial molar volume increases with tem-
perature ���0, the usual situation�, we expect the TMD of the
mixture to shift to lower temperatures and ultimately be oc-
cluded by the solution’s freezing point. Ionic solutes as well
as a number of hydrophilic species indeed suppress the TMD

of water.20–26 However, systematic studies of homologous

series of soluble species containing hydrophobic units, such

© 2005 American Institute of Physics03-1

AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2075127
http://dx.doi.org/10.1063/1.2075127
http://dx.doi.org/10.1063/1.2075127


164503-2 Chatterjee, Ashbaugh, and Debenedetti J. Chem. Phys. 123, 164503 �2005�
as the n-alkyl alcohols, have shown that nonpolar groups can
actually shift the TMD above that of pure water.27–31 This
surprising result has been ascribed to the tendency of hydro-
phobic moieties to locally enhance the hydrogen-bond net-
work in water, and hence to shift water’s anomalies to higher
temperatures. In terms of the above analysis, the positive
shift of the TMD implies that the solute’s partial molar vol-
ume at infinite dilution decreases with increasing tempera-
ture. This is consistent with the notion of an open water
structure around hydrophobic solutes progressively disrupted
by thermal motion. Though plausible, such interpretations of
TMD shifts are largely qualitative. Microscopic models have
yet to be applied to the problem of understanding the effects
of solutes on water’s response functions. The purpose of this
work is to begin to fill this gap in understanding.

Recently we developed a statistical mechanical model of
liquid water19 and of its mixtures with van der Waals
solutes.4 Here we use this model to study the effects of non-
polar solutes on water’s TMD, isothermal compressibility, and
isobaric heat capacity.32–37 In particular, we make specific
predictions on the effects of solute size and solute-solvent
dispersion forces on water’s response functions. The paper is
organized as follows. In Sec. II we summarize the statistical
mechanical model. Sec. III presents the results on the effect
of solute addition upon the TMD. The corresponding effects
on the compressibility and heat-capacity anomalies are dis-
cussed in Sec. IV. We summarize the main conclusions and
suggest directions for future research in Sec. V.

II. STATISTICAL MECHANICAL MODEL

Previously, we developed an analytical statistical ther-
modynamic framework for describing the anomalous proper-
ties of liquid water19 and aqueous mixtures with a van der
Waals fluid.4 Here we summarize the key equations for aque-
ous solutions and provide only a brief description. A detailed
derivation and discussion is presented in Refs. 4 and 19

In the present model, the canonical partition function of
a mixture of Nw water molecules and Ns solute molecules in
a volume V at temperature T is written as

Q�Nw,Ns,V,T� = � 1

Nw!Ns!�w
3Nw�s

3Ns
��V − Nb�N

�exp�N	
a��4��Nw�
j=1

jmax

�
k=0

kmax

f j,k
Nwpj,k. �5�

In this expression �i is the thermal wavelength of component
i, N=Nw+Ns is the total number of molecules, and 	−1

=kBT is the product of Boltzmann’s constant and the tem-
perature. a and b are the familiar van der Waals attractive
interaction and excluded volume parameters for the mixture.
Standard mixing rules were applied to evaluate the solution a
and b parameters,

a = xw
2 aww + 2xwxsasw + xs

2ass, �6a�

b = xwbw + xsbs, �6b�

where xi=Ni /N is the mole fraction of component i, and the

cross solute-water van der Waals interaction parameter is
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given by asw=	awwass. The pure component excluded vol-
ume parameters are determined by the individual component
van der Waals diameters, �i, so that the pressure diverges at
the random close packing density

0.64bi =
��i

3

6
, �7�

where the spheres occupy 64% of the volume.
The first three terms in the product on the right side of

Eq. �5� comprise the partition function of a van der Waals
mixture. The last two terms constitute the contribution of
aqueous hydrogen bonding. pj,k is the probability that j water
molecules and k solute molecules occupy the bonding shell
of a central water molecule, while the inner exclusion shell
of the central water is devoid of both water and solute mol-
ecules �see Fig. 1�.4 We assumed previously,4 and here, that
the solute-mediated effect on water hydrogen bonding is
zero. Different choices �e.g., solute-induced hydrogen-bond
weakening, hydrogen-bond enhancement� can easily be in-
corporated into the calculations, although we have not done
so here. f j,k arises from orientational contributions to the
hydrogen-bonding partition function for a central molecule
with j water molecules and k solute molecules in its bonding

FIG. 1. Representation of the hydrophobic hydration model �Ref. 4�. �a� In
order to form a hydrogen bond, two water molecules must be properly
oriented ��1 ,�2
�*� regardless of the value of �1 and �2. �b� Water mol-
ecules have a hard core of radius �w, within which the center of no other
molecule can penetrate. To form a hydrogen bond, a central water molecule
must be surrounded by an exclusion shell of radius rwi, devoid of centers of
other water molecules, and a properly oriented second water molecule must
be within its hydrogen bonding shell �rwi�r�rwo�. The presence of addi-
tional crowding water molecules within the hydrogen bonding shell weakens
an existing bond. �c� Water molecules �gray� have a hard-core radius �sw

= ��w+�s� /2, within which the center of no other solute �white� can pen-
etrate. In order to form a hydrogen bond a central water molecule must also
be surrounded by a solute exclusion shell of radius rsi. Solutes whose centers
are in the hydration shell �rsi�r�rso� can affect the strength of a hydrogen
bond �Ref. 4�.
shells and is given by

AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



164503-3 Thermodynamic response of aqueous mixtures J. Chem. Phys. 123, 164503 �2005�
f j,k = 
1 +
j

4
�1 − cos �*�2�e	�j,k − 1�� , �8�

where �* is the critical angle for water hydrogen bonding,
and � j,k is the hydrogen-bonding energy between a pair of
water molecules when there are �j−1� crowding water mol-
ecules and k solute molecules in the central bonding shell.

− � j,k = − �max + �j − 1��pen + k�np. �9�

In this expression �max is the energy of a solitary water-
hydrogen bonding pair, while �pen and �np are the contribu-
tions associated with the addition of other water molecules
and nonpolar solutes to the bonding and hydration shell, re-
spectively.

The thermodynamic properties of aqueous mixtures can
be determined by appropriate manipulations of the partition
function. Of central interest to the present study is the mix-
ture equation of state �EOS�, which is given by the volume
derivative of the Helmholtz free energy,

P =

kBT

1 − 
b
− a
2 + NwkBT�

j=1

jmax

�
k=0

kmax � �pj,k

�V
�

T,Nw,Ns

ln f j,k,

�10�

where 
=
s+
w, the total number density, is the sum of the
water and solute number densities. In the limits 
w→0 and

s→0, the above equation reduces to the van der Waals EOS
or to the EOS of pure water,19 respectively. To determine the
densities of water and its mixtures, the system volume is
varied at fixed Nw, Ns, and T until the target pressure �1 atm
throughout this work� is obtained. We have previously deter-
mined a set of parameters for the EOS that accurately cap-
tures the properties of water at atmospheric pressure and pro-
duces a density maximum at 4.14 °C. The parameter set
used here for aqueous solutions is given in Table I. In what
follows, we examine the effects of solute size and attractive
interactions on the TMD, compressibility, and heat capacity of
aqueous mixtures.

III. EFFECT OF SOLUTES ON THE TMD

Figure 2 shows experimental data on the effect of differ-
ent solutes upon the TMD of aqueous mixtures at atmospheric
pressure. It can be seen that some solutes, such as propylene
glycol, and ethylene glycol, cause a monotonic decrease in
the TMD, while the addition of other solutes such as methyl
alcohol, ethyl alcohol, and t-butyl alcohol causes the TMD to

TABLE I. Water parameters for single bond model �Ref. 4�.

�w 3.135 Å
rwi 1.008�w

rwo 1.04�w

aww 0.310 Pa m6/mol2

�* 0.175 rad
�max 23 kJ/mol
�pen 3 kJ/mol
jmax 8
increase above the pure water value at low solute mole frac-
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tions. For these solutes the TMD eventually reaches a maxi-
mum with respect to solute mole fraction, and decreases
monotonically upon further solute addition. According to
Wada and Umeda,27 increases in the TMD upon solute addi-
tion are a consequence of solute-solute interactions that are
weak relative to solute-solvent interactions. Figure 3 shows
the theoretical predictions of the composition dependence of
the mixture TMD at atmospheric pressure for aqueous solu-
tions of methyl alcohol and of ethyl alcohol according to the
hydrophobic hydration model of Ashbaugh et al.4 The van
der Waals parameters for the solutes were computed from
experimental values of critical temperature and pressure us-
ing the relations

ass =
27kB

2Tc
2

64Pc
, �11�

bs =
kBTc

8Pc
. �12�

The water parameters are given in Table I. It can be seen that
the model is able to capture qualitatively the experimental

FIG. 2. Change in TMD at atmospheric pressure with solute mole fraction for
five solutes: methyl alcohol ���, ethyl alcohol ���, t-butyl alcohol ���,
propylene glycol ���, and ethylene glycol ��� �Experimental data from
Ref. 27�.

FIG. 3. Predicted TMD shifts for methanol �solid line� and ethanol �dashed
line� from the hydrophobic hydration model �Ref. 4� using van der Waals
parameters fit to critical properties of the alcohols �MeOH-�s=5.144 Å and

6 −2 6 −2
ass=0.966 Pa m mol ; EtOH-�s=5.546 Å and ass=1.218 Pa m mol �.
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observations �see Fig. 2�. Both TMD curves exhibit a maxi-
mum, whose value is greater for ethyl alcohol than for
methanol. The numerical values of the TMD, however, do not
agree well with experimental behavior. One reason for this
discrepancy is the fact that the hydrophobic hydration model
considers solutes to be spherical. The nonspherical shape of
the alcohol molecules and the hydrogen bonding between the
solutes and water are not included in this analysis. One way
to compensate for these model limitations is to consider the
incremental effect of one methylene group ��TMD

=�TMD�EtOH�−�TMD�MeOH�. Figure 4 shows that the
model predictions for this incremental effect are in good
agreement with experiment.27 Therefore, even though the
mixture equation of state is unable to describe the effect of
hydrogen bonding between solute and solvent molecules, or
accurately account for the geometry of the solute, it captures
the incremental effect of increasing solute hydrophobicity on
the TMD.

Figure 5 shows the calculated locus in the �ass ,�s� plane
at atmospheric pressure separating solutes that, like metha-
nol, ethanol, and t-butanol, cause a positive shift in the TMD,
from those, such as ethylene glycol and propylene glycol,
that cause a negative shift. It can be seen that solute size and

FIG. 4. Difference in the TMD shifts for ethanol and methanol, ��TMD

=�TMD�EtOH�−�TMD�MeOH�. The solid line represents theoretical predic-
tion; dashed line, experiment �Ref. 27�.

FIG. 5. Effect of solute characteristic size and energy parameters, �s and ass,
at atmospheric pressure on the temperature of maximum density �TMD�. On
the shaded side of the curve, the TMD decreases upon solute addition. Model

parameters for water are given in Table I obtained from Ref. 4.

Downloaded 17 Jul 2006 to 128.112.35.75. Redistribution subject to 
solute-solute interactions have opposite effects on the TMD:
increasing the former causes �TMD/�xs at infinite dilution to
increase whereas strong solute-solute attractions cause
�TMD/�xs at infinite dilution to decrease. The effect of solute-
solute attractions is illustrated in Fig. 6, where the calculated
TMD shifts for a 4 Å solute at atmospheric pressure are
shown for increasing values of ass �top to bottom�. The cal-
culations explain the observation of Wada and Umeda27 that
weak solute-solute interactions relative to solute-solvent in-
teractions cause the TMD to shift to higher temperatures upon
solute addition. In our model ass /asw= �ass /aww�1/2, so de-
creasing ass at fixed aww is equivalent to weakening solute-
solute interactions relative to solute-solvent interactions.

It is possible to derive an analytical expression for the
curve shown in Fig. 5. To this end, we write the identity


 �TMD

�xs



P

�

= 
w�̄s
�
 �TMD

��s



P

�

, �13�

where the superscript � denotes infinite dilution, v̄s
� is the

solute partial molar volume at infinite dilution, 
w is the
number density of water molecules, and �s is the solute vol-
ume fraction ��s=xsv̄s /v=
sv̄s�. Figure 7 shows the volume
fraction dependence of the TMD for hard-sphere solutes of
varying sizes. It can be seen that the limiting slope of the
TMD vs �s curves is essentially independent of solute size.
Hence, for hard-sphere solutes, ��TMD/�xs�P

� should be di-
rectly proportional to the solute’s partial molar volume. This
expectation is borne out when ��TMD/�xs�P

� is plotted as a
function of v̄s

� �see Fig. 8�.
Next, we write the thermodynamic identity �see Appen-

dix for derivation�

� �TMD

�xs
�

P

�

= 
w
2 �̄s

� ��2P/�T�
w�0

��2P/�T2�

0 −

��2P/�T�xs��

��2P/�T2�

0 , �14�

where the superscript � denotes an infinite dilution quantity,
and the superscript 0 denotes a pure solvent quantity. The
distinction between infinite dilution and pure solvent quanti-
ties is that the latter do not depend on any solute character-

FIG. 6. Shift in TMD at atmospheric pressure with increasing strength of
solute-solute interactions for a solute of fixed size �s=4 Å. The top curve
corresponds to ass=0, while subsequent curves represent the effect of in-
creasing ass in the direction of the arrow in increments of 0.2 Pa m6 mol−2.
istics �e.g., �s�, whereas the former do. It is shown in the
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Appendix that for the EOS considered here, every second
derivative of the pressure in Eq. �14� is independent of ass.
Hence the difference between the TMD shift �left-hand side of
Eq. �14�� due to a solute with nonzero van der Waals attrac-
tive parameter and the TMD shift due to a hard-sphere solute
of the same size is given by

� �TMD

�xs
�

P,ass�0

�

− � �TMD

�xs
�

P,ass=0

�

= 
w
2 ��2P/�T�
w�0

��2P/�T2�

0 ��̄s

���s,ass � 0� − �̄s
���s,ass = 0�� . �15�

As shown in the Appendix,

�̄s
���s,ass � 0� − �̄s

���s,ass = 0� = − 2KT
0
wasw. �16�

It follows from Eqs. �13�, �15�, and �16� that

FIG. 7. Shift in atmospheric pressure TMD for hard-sphere solutes of differ-
ent sizes �size increasing from 1 to 6 Å in the direction of the arrow�, as a
function of solute volume fraction. The limiting tangent has a slope
��TMD/��s�P

�=92.4 K.

FIG. 8. Slope of the atmospheric pressure TMD upon solute addition at
infinite dilution ���TMD/�xs�P

�� as a function of the solute’s partial molar
volume �v̄s

��. The dashed line corresponds to the prediction for hard-sphere
solutes. The open points are the results for different solute sizes �from
1 to 6 Å�. The filled points indicate the condition when the TMD shift is

zero.
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� �TMD

�xs
�

P,ass�0

�

= 
w�̄s
��ass = 0�� �TMD

��s
�

P

�

− 2KT
0asw
w

3 ��2P/�T�
w�0

��2P/�T2�

0 . �17�

Hence, the line in ��s ,ass� parameter space along which
��TMD/�xs�P

� vanishes must satisfy

�̄s
��ass = 0� = 
2KT

0
w
2 ��2P/�T�
w�0	aww

��2P/�T2�

0��TMD/��s�P

� �ass
1/2 � �ass

1/2,

�18�

where � is a water-specific quantity that depends on P and T
only, and we have used �both in Eq. �18� and throughout this
work� the combining rule asw= �awwass�1/2. If, furthermore,
we assume v̄s

���s
3, we obtain, finally,

�s
3 � ass

1/2. �19�

Because point solutes have nonvanishing partial molar sol-
utes �see Appendix�, one expects in general v̄s

��ass=0�
=m�3+q. It is therefore of interest to check the validity of
Eq. �19�. Figure 9 shows that, indeed, there is a linear corre-
lation between ass

1/2 and �s
3 when the full model is used to

calculate the value of ass that causes ��TMD/�xs�P
� to vanish,

for any given value of �s. The y intercept of this correlation,
however, is not zero, since the assumption that ��TMD/�xs�P

�

is independent of solute size breaks down for small solutes
�see Fig. 7�. Nevertheless, the reasoning underlying the cor-
relation of Fig. 9 provides insight into the balance between
the hydrophilic and hydrophobic characteristics of a solute,
as embodied in ass and �s, which shift the TMD of aqueous
solutions.

IV. EFFECT OF SOLUTES ON COMPRESSIBILITY
AND HEAT-CAPACITY ANOMALIES

We also investigated the effect of adding nonpolar sol-
utes on water’s isothermal compressibility and isobaric heat

FIG. 9. Correlation between solute size and attractive interactions for
��TMD/�xs�P

�=0. Here, �s
3 is plotted vs ass

0.5. In the shaded region,
��TMD/�xs�P

�
0, whereas ��TMD/�xs�P
��0 above the line.
capacity. At atmospheric pressure, the former quantity exhib-
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its a broad minimum with respect to temperature at 46 °C,
below which temperature the compressibility increases
sharply upon cooling.14 Experimentally, it is found that the
anomalous increase in compressibility upon cooling contin-
ues down to the homogeneous nucleation temperature. The
isobaric heat capacity likewise exhibits a broad atmospheric
pressure minimum with respect to temperature at 33 °C, be-
low which temperature it increases sharply upon cooling
down to the homogeneous nucleation temperature.14

Both the compressibility and the heat capacity can be
readily calculated from the hydrophobic hydration model by
differentiation of the equation of state and the partition func-
tion, respectively.4 It was found that the temperatures at
which the compressibility and heat capacity exhibit minima
are rather insensitive to the mixture’s composition for the
dilute conditions considered here �Figs. 10 and 11�. In con-
trast, the low-temperature maxima for both response func-
tions are predicted to be sensitive functions of composition
�Figs. 10 and 11�. Accordingly, the atmospheric pressure
maxima with respect to temperature of both the compress-
ibility and heat capacity were used as indicators of the effect
of solute addition. For solutes that enhance water’s anoma-
lies one expects to see the maxima shift to higher tempera-
tures; vice versa, for solutes that suppress water’s anomalies,
the maxima in heat capacity and compressibility are ex-
pected to shift to lower temperatures upon solute addition.

Figure 12 shows the calculated boundary in the �ass ,�s�
plane, separating solutes that shift the compressibility and
heat-capacity maxima to lower-temperature �suppression of
anomalies: high ass, low �s region� from solutes that shift the
anomalies to higher temperatures �enhancement of anoma-
lies: low ass, high �s region�, at atmospheric pressure. It can
be seen that both loci coincide in the limit of small ass and
�s. Interestingly, we find that the isothermal compressibility
and TMD loci coincide over the entire range of parameters

FIG. 10. Temperature dependence of the isothermal compressibility �KT� at
atmospheric pressure. Aqueous solution of van der Waals solute �ass

=2 Pa m6/mol2, �s=2 Å� shows a shift of the temperature of the metastable
maximum in KT to lower temperature due to solute addition. The arrow
indicates the direction of increasing mole fraction of solute �xs=0.001, �;
xs=0.005, �; xs=0.01, ��.
explored here.
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The overall picture that emerges from Fig. 12 is as fol-
lows: solute-solute attractions and hence �by the Lorentz-
Berthelot mixing rules adopted here� solute-solvent attrac-
tions suppress water’s anomalies, and shift the
compressibility and heat-capacity maxima as well as the TMD

towards lower temperatures. Hard-sphere solutes enhance
water’s anomalies, shifting the compressibility and heat-
capacity maxima as well as the TMD towards higher tempera-
tures. This effect is more pronounced the larger the solute.

V. CONCLUSIONS

In this work we have applied a statistical mechanical
model of water solutions to investigate the effects of nonpo-
lar solutes on the TMD, isobaric heat capacity, and isothermal
compressibility at atmospheric pressure. The model repro-
duces the experimentally observed differential shift in the
TMD for n-alkyl alcohols, and thereby provides a useful
framework for interpreting solute effects on the TMD. In par-

FIG. 11. Temperature dependence of the isobaric heat capacity �Cp� at at-
mospheric pressure. Aqueous solution of van der Waals solute �ass

=2 Pa m6/mol2, �s=2 Å� shows a shift of the temperature of the metastable
maximum in Cp to lower temperature due to solute addition. The arrow
indicates the direction of increasing mole fraction of solute �xs=10−16, �;
xs=0.01, �; xs=0.02, ��.

FIG. 12. Effect of solute molecule diameter �s and ass at atmospheric pres-
sure on temperature of maximum density �TMD�, isobaric heat capacity �Cp�,
and isothermal compressibility �KT�. Shading is used to indicate regions of
“normal” response function behavior. Model parameters for water are given

in Table I obtained from Ref. 4.
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ticular, we find that the TMD is shifted to higher temperatures,
at infinite dilution, with increasing solute hydrophobicity, as
characterized by its van der Waals radius. The TMD is shifted
to lower temperatures with increasing solute-solvent attrac-
tions. These predictions are in agreement with observed ex-
perimental trends.27 For simple van der Waals solutes we
derived a scaling relationship between solute size ��� and
interaction strength �a� such that these competing contribu-
tions to the TMD shift balance each other. This scaling rela-
tionship is of the form �6�a.

By studying numerically the effect of solute addition on
the low-temperature maxima in the isobaric heat capacity
and the isothermal compressibility we found very similar
trends, namely, that increased solute hydrophobicity causes
an upward temperature shift in water’s anomalies, and con-
versely increased dispersive attractions among solute mol-
ecules cause the anomalies to move to lower temperatures.
The �� ,a� locus along which these competing effects on a
given property exactly balance is numerically indistinguish-
able for the case of TMD and isothermal compressibility. The
corresponding heat-capacity curve is very similar but shifted
so that smaller solutes �fixed a� can cause a positive tempera-
ture shift in the location of heat-capacity maxima than can do
so for the TMD. Equivalently, a larger a �fixed �� is needed to
cause a negative shift in the location of the heat-capacity
extremum.

Several avenues of future inquiry are suggested by this
work. Our analysis has been restricted to atmospheric pres-
sure. Given the sensitive manner in which liquid water’s
anomalies depend on pressure, it will be interesting to per-
form analogous calculations over a wide range of pressures.
Such calculations are in progress. An important limitation of
the statistical mechanical model on which our analysis is
based is its neglect of electrostatic forces. These play an
important role both in pure water and in its mixtures with
ionic solutes. Extension of the model to encompass this im-
portant class of systems is another interesting direction for
future investigations. Finally, we mention the desirability to
generalize the model to nonspherical solutes.
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APPENDIX: DERIVATIONS

1. Derivation of Eq. „14…

Consider the derivative

� �P

�T
�

V,Nw,Ns

=
�p

KT
� ��T,V,Nw,Ns� �A1�
which vanishes at the TMD. In general,
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d� = � ��

�T
�

V,Nw,Ns

dT + � ��

�V
�

T,Nw,Ns

dV + � ��

�Nw
�

V,T,Ns

dNw

+ � ��

�Ns
�

V,T,Nw

dNs �A2�

and, therefore, along a curve of constant �,

0 = � ��

�T
�

V,Nw,Ns

� �T

�Ns
�

P,Nw,�
+ � ��

�V
�

T,Nw,Ns

� �V

�Ns
�

P,Nw,�

+ � ��

�Ns
�

V,T,Nw

. �A3�

Solving for ��T /�Ns�P,Nw,�, and multiplying by Nw,

Nw� �T

�Ns
�

P,Nw,�
= − Nw� �V

�Ns
�

P,Nw,�

���/�V�T,Nw,Ns

���/�T�V,Nw,Ns

− Nw

���/�Ns�V,T,Nw

���/�T�V,Nw,Ns

. �A4�

Consider first the left-hand side. When �=0, T=TMD, so

lim
�→0

Nw� �T

�Ns
�

P,Nw,�
= Nw� �TMD

�Ns
�

P,Nw

= xw
2� �TMD

�xs
�

P
.

�A5�

Therefore at infinite dilution,

lim
xs→0

Nw� �TMD

�Ns
�

P,Nw

= � �TMD

�xs
�

P

�

. �A6�

We next consider the right-hand side derivative
��V /�Ns�P,Nw,� in �A4�. In general,

dV = � �V

�T
�

P,Nw,Ns

dT + � �V

�P
�

T,Nw,Ns

dP + � �V

�Nw
�

P,T,Ns

dNw

+ � �V

�Ns
�

P,T,Nw

dNs �A7�

and, therefore,

� �V

�Ns
�

P,Nw,�
= � �V

�Ns
�

P,T,Nw

+ � �V

�T
�

P,Nw,Ns

� �T

�Ns
�

P,Nw,�
.

�A8�

When �=0, ��V /�T�P,Nw,Ns
=0 �see �A1��, hence

� �V

�Ns
�

P,Nw,�=0
= �̄s �A9�

and, at infinite dilution,

lim
xs→0

� �V

�Ns
�

P,Nw,�=0
= �̄s

�. �A10�
Next, we write �see �A4��
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Nw� ��

�V
�

T,Nw,Ns

= � ��

�1/
w
�

T,Nw,Ns

= − 
w
2� ��

�
w
�

T,Nw,Ns

.

�A11�

At infinite dilution,

lim
xs→0


− 
w
2� ��

�
w
�

T,Nw,Ns

� = − 
w
2� �2P

�T�
w
�0

. �A12�

Likewise,

lim
xs→0

� ��

�T
�

V,Nw,Ns

= � �2P

�T2�

w

0

. �A13�

Therefore, from �A10�, �A12�, and �A13�, the first group of
terms on the right-hand side of �A4� becomes, at infinite
dilution,

− � �V

�Ns
�

P,Nw,�

Nw���/�V�T,Nw,Ns

���/�T�V,Nw,Ns

= 
w
2 �̄s

� ��2P/�T�
w�0

��2P/�T2�
w

0 .

�A14�

We now consider the numerator of the last term on the right
side of �A4�,

Nw� ��

�Ns
�

T,V,Nw

= Nw
�2P

�T�Ns
=

Nw
2

N2

�2P

�T�xs
= � �2P

�T�xs
��

,

�A15�

where the final result is valid at infinite dilution. Finally,
substituting �A6�, �A14�, and �A15� into �A4� we obtain Eq.
�14�,

� �TMD

�xs
�

P

�

= 
w
2 �̄s

� ��2P/�T�
w�0

��2P/�T2�
w

0 −
��2P/�T�xs��

��2P/�T2�
w

0 .

The only term in the equation of state that depends on the
attractive parameters aww and ass is −a
2 �see Eq. �10��,
where a=xw

2 aww+2xwxsasw+xs
2ass. It follows that none of the

second derivatives of P on the right-hand side of �14� is a
function of ass, as stated in Sec. III.

2. Derivation of Eq. „16…

We first write the identity

�̄s = − VKT� ��s

�V
�

T,Nw,Ns

. �A16�

The solute’s chemical potential has the form.4

�s�ass� − �s�ass = 0� = − 2�
wasw + 
sass� . �A17�

Therefore,

� ��s

�V
�

T,Nw,Ns

− � ��s�ass = 0�
�V

�
T,Nw,Ns

=
2

V
�
wasw + 
sass� .

�A18�

From �A16� and �A18� we obtain Eq. �16�
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�̄s
���s,ass � 0� − �̄s

���s,ass = 0� = − 2KT
0
wasw.

3. Partial molar volume of a point solute

The chemical potential of a point solute is given by

�s = kBT ln 
s�s
3, �A19�

where �s is the solute’s de Broglie wavelength. Then from
Eq. �A16�, we obtain, for a point solute,

�̄s = kBTKT. �A20�
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