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A kinetic theory of homogeneous bubble nucleation
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We present a kinetic theory of homogeneous bubble nucleation based on explicit calculation of the
single-molecule evaporation and condensation rates as a function of the size of the vapor embryo.
The surface condensation rate is calculated from the kinetic theory of gases, and the surface
evaporation rate is related to the rate of escape of molecules from a potential well in the field
established by the liquid–vapor interface. Equality of these rates corresponds naturally to the critical
bubble. While the interface plays a crucial role in this respect, the kinetic nucleation theory does not
invoke an explicit surface tension. The nucleation rate is derived from a population balance and
depends only on the ratio of the evaporation to condensation rates. In contrast to classical theory, a
nontrivial trend captured by the present theory is the increase in nucleation rate with decreasing
temperature at fixed degree of metastability. Comparison with classical nucleation theory reveals
markedly different supersaturation dependencies of the nucleation rate, while the predicted sizes of
the critical bubble are in good agreement. ©2003 American Institute of Physics.
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I. INTRODUCTION

In spite of their importance and ubiquity, significant ga
persist in our understanding of the thermodynamics and
netics of metastable liquids. Consequently, fundame
knowledge of technologically important phenomena rang
from crystallization and glass formation1 to cavitation2 and
explosive boiling3 remains incomplete. The study of metas
bility in liquids can be approached either from an equil
rium ~statistical mechanical! or from a kinetic viewpoint.
Rigorous statistical mechanical studies of metastable liqu
inevitably involve the imposition of constraints that mainta
the liquid’s state of metastability by preventing it from tran
forming into the stable phase.1,4–8Kinetic approaches, on th
other hand, focus on the actual mechanism and rate by w
metastable liquids undergo phase transitions. This pa
adopts the latter approach to study bubble nucleation in
perheated liquids.

Nucleation of vapor bubbles in a metastable~super-
heated! liquid is an important yet incompletely understoo
phenomenon that plays a key role in a variety of technica
relevant situations, including cavitation,2 cavitation
erosion,9,10 explosive boiling,3,11,12 sonoluminescence,13 and
sonochemistry.14 Knowledge of this mechanism at the m
lecular level is also key to reconciling major discrepanc
between theoretically predicted and observed limits of liq
superheating15,16 and tension.2,17,18 In practical situations,
bubble formation is facilitated by the presence of an exter
surface which usually takes the form of dissolved or s
pended impurities or the walls containing the metastable
uid. This is referred to as heterogeneous bubble nuclea
In the absence of such heterogeneities, formation of the
por phase must take place entirely within the bulk metasta
liquid, and this is called homogeneous bubble nucleat

a!Electronic mail: pdebene@princeton.edu
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While the conditions required for observing truly homog
neous nucleation seem far removed from those encount
in practice, homogeneous bubble nucleation can neverthe
be attained in carefully controlled experiments.1 It represents
a fundamental and reproducible relaxation mechanism c
acteristic of the liquid state itself, and it is on this pheno
enon that we focus our attention in this work.

Here, we present a kinetic theory of homogeneo
bubble nucleation based on the original ideas of Ruckens
and co-workers,19–26 who proposed a useful and insightfu
kinetic approach to nucleation. We apply our theory to t
superheated Lennard-Jones fluid. The theory has two im
tant features. The first is the explicit calculation of the rate
escape of molecules from a potential energy well establis
by the interface between the emerging vapor embryo and
metastable liquid, and the second is the formulation o
population balance based on theexcessnumber in the em-
bryo, defined as the difference between the number of m
ecules in the embryo and number of molecules in a region
the same size occupied by the bulk metastable liquid. T
theory predicts, as it should, that the nucleation rate increa
with superheating~i.e., supersaturation! at constant tempera
ture while the size of the critical bubble decreases. An i
portant nontrivial trend captured by the theory is the incre
of the nucleation rate with decreasing temperature at fi
degree of metastability, a result that classical theory fails
predict. In addition, the predictions of the theory adhere
the thermodynamic scaling laws originally proposed
McGraw and Laaksonen27 for droplet nucleation, and re
cently extended by Shen and Debenedetti28 for bubble for-
mation. The format of this paper is as follows. In Sec. II, w
provide a brief overview of theoretical approaches to
study of homogeneous bubble nucleation. In Sec. III,
theoretical formalism is presented. Results and discus
are presented in Sec. IV. Finally, conclusions are presente
Sec. V.
© 2003 American Institute of Physics
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II. HOMOGENEOUS BUBBLE NUCLEATION:
THEORETICAL APPROACHES

While homogeneous bubble nucleation has been rec
nized for over a century as the fundamental mechanism
which a superheated liquid devoid of impurities transfor
into a stable vapor,29 a rigorous theory for this phenomeno
does not exist. Before presenting our approach, we rev
important developments in the theoretical study of bub
formation. This discussion will introduce some of the sub
and difficult questions involved.

Thermodynamically, the reversible work of forming a
embryo of a new phase from within a pre-existing metasta
one comprises two contributions. The first is associated w
the cost of creating an interface and is therefore proportio
to the surface area of the developing embryo. The secon
related to the thermodynamic driving force tending to low
the overall free energy of the system by forming the sta
phase, and is therefore proportional to the embryo volu
The competition between these two contributions gives
to a critically sized embryo such that larger nuclei gro
spontaneously into the stable phase while smaller emb
shrink spontaneously and disappear into the metastable
roundings. In general, the steady-state rate of nucleationJSS,
that is to say the number of critical nuclei formed per u
time and volume, can be written in Arrhenius form

JSS5A•expS 2W*

kBT D , ~1!

whereA is a kinetic frequency factor that in general depen
weakly on temperature,T is the temperature,kB is Boltz-
mann’s constant, andW* is the nucleation free-energy ba
rier, or the reversible work needed to form a critical nucle
While Eq. ~1! is consistent with the activated dynamics a
sociated with the above thermodynamic arguments, it
also be derived from a kinetically based population or m
balance describing the change in the number of embryo
clusters of a certain size with respect to time in terms
single-molecule evaporation and condensation events a
surface. Because the rates of these molecular surface
cesses, in particular the evaporation rate from a curved
face, are generally unknown, equilibrium arguments are u
ally invoked to link the unknown evaporation rate to t
condensation rate, which is known from the kinetic theory
gases. The resulting expression for the rate of nucleation
becomes a function of the equilibrium distribution of em
bryos in the metastable phase. The equilibrium concentra
of an embryo of a given size is in turn related through s
tistical mechanical arguments to the Boltzmann factor of
reversible work associated with its formation. Notice th
this approach transforms the kinetic description of nuclea
into a thermodynamic one, where the free-energy barrie
the crucial quantity controlling the rate. The theory presen
in this paper addresses this underlying problem directly,
calculating explicitly the rates of evaporation and conden
tion at the embryo’s surface.

Most theoretical treatments of nucleation have focu
on the thermodynamic calculation of the free-energy bar
heightW* , an approach that is in principle justified in ligh
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
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of the sharp dependence of the nucleation rate on this q
tity. In so-called classical nucleation theory~CNT!,1,30,31

which has historically provided the canonical description
nucleation phenomena, it is assumed that pre-critical
critical embryos are macroscopic and uniform objects p
sessing the properties of the thermodynamically stable ph
Within the classical framework, the free-energy barr
height for homogeneous bubble nucleation is given by

WCNT* 5
16pg3

3~P82P!2 , ~2!

whereP8 is the pressure within the critical bubble,P is the
pressure of the bulk liquid, andg is the surface tension
which is assumed to be the same as that for a planar liqu
vapor interface. The predictions of the classical theory
only qualitatively correct. Both the free-energy barrier a
the size of the critical bubble are rightly predicted to diver
at phase coexistence, and to decrease as the extent of
etration into the metastable region increases. However, C
applies macroscopic thermodynamics to microscopic obje
~i.e., pre-critical and critical nuclei!. Accordingly, an impor-
tant deficiency of this theory is its inability to predict loss
stability, that is to say a vanishing free-energy barrier. T
shortcoming is directly related to the use of macrosco
thermodynamic arguments,1 in particular a size-independen
surface tension. Yet, despite its limitations, classical nuc
ation theory nevertheless provides a basic reference
which to compare new theories and interpret experime
measurements.

In contrast to the classical theory’s continuum viewpoi
statistical mechanical approaches address the molecular-
description of nucleation. While most such efforts have c
tered on droplet formation and crystallization, the theoreti
difficulties encountered are quite general in nature, and t
are directly related to the problem of identifying the eme
ing embryo at the molecular level. An underlying constru
in statistical mechanical approaches to nucleation is the
bryo of the incipient thermodynamically stable phase or
so-called ‘‘physical cluster.’’32–34 The rationale behind the
concept of a physically consistent cluster is to provide a r
orous microscopic definition of an embryo of the emergi
phase. This is necessary in order to enumerate those con
rations that contribute to the system’s partition function, a
therefore its free energy, which in turn enables the calcu
tion of the reversible work of forming a critical nucleus. T
illustrate the difficulties involved, consider the simplest ca
of droplet formation. In this situation, the intuitive picture o
an incipient liquid droplet forming within a supercooled v
por is easy to envision, but identifying or characterizing su
an object given a snapshot of the metastable system is n
all straightforward. Similar difficulties exist in the study o
crystallization in a supercooled liquid. In the case of crys
nucleation, such difficulties are compounded by observati
from simulation35,36 and experiment37,38 which indicate that
the crystal structure of the critical nucleus is not necessa
that of the bulk stable phase. For the case of bubble for
tion, a microscopic picture of an emerging vapor embr
that is to say one that is able to identify unambiguou
which molecules belong to the bubble and which do not
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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not easy to envision. Such a picture must reconcile the
that a bubble is composed mostly of empty space, yet it a
contains mass. The corresponding difficulty in assign
molecules to a bubble renders the microscopic study
bubble nucleation particularly challenging.

Nevertheless, because a bubble is composed large
empty space, especially at sufficiently low temperatures
significant contribution to the energetics of forming a critic
bubble is associated with the work of forming a cavi
While cavity formation in stable liquids has been addres
in the context of solvation and protein folding,39–43compara-
tively less attention has been paid to it in the context
bubble nucleation in metastable liquids.6,8 Recently, Pun-
nathanam and Corti44 have demonstrated by computer sim
lation that cavities exceeding a critical size are able to de
bilize the Lennard-Jones liquid under tension, causing i
undergo a macroscopic liquid-to-vapor phase transiti
However, a vapor bubble is not composed entirely of em
space; it contains a small number of molecules that can
simply be ignored. For example, in bulk liquid helium, it h
been observed experimentally that bubbles preferenti
form around electrons, He atoms, or He2 molecules.45,46

Thus, an open question is how the presence of particle
the cavity region influences the overall energetics of bub
formation.

Density-functional theory~DFT! approaches to homoge
neous nucleation, pioneered by Oxtoby and co-workers,47–50

rely on the description of a metastable system in terms
spatially varying density field. Provided that the system c
be coarse grained, the density field corresponding to the c
cal nucleus is a saddle point in functional space~i.e., the
space defined by all possible density fields!. Most DFT stud-
ies have focused on crystallization47,48,51,52 and droplet
formation;49,50,53comparatively less attention has been p
to bubble nucleation. Early DFT studies of bubble nucleat
in the Lennard-Jones50 and Yukawa49 fluids and3He ~Ref.
54! by Oxtoby and co-workers were the first to identify no
classical nucleation effects, in particular the fact that the d
sity at the center of the critical bubble at conditions su
ciently far removed from coexistence differs apprecia
from that of the stable vapor. Recent DFT work28 has shown
that in liquids under high tension the density at the cente
the critical bubble can be at least an order of magnitu
greater than that of the stable vapor. It has also been sh
that the DFT-predicted free-energy barrier height agrees
with classical theory in the vicinity of phase coexistence, b
improving over the classical picture, it in fact vanishes at
thermodynamic liquid spinodal.

Computer simulation has proven valuable in investig
ing the microscopic processes that trigger the nucleation
crystals, droplets, and bubbles. Direct simulati
methods55–63 consist of preparing a metastable system a
simply evolving it in time until nucleation occurs. While th
approach in principle provides dynamical information r
garding the nucleation process, it is computationally ine
cient because most of the time is spent simply waiting
nucleation to take place. Alternatively, biased sampl
methods, namely umbrella sampling,64–68 first introduced in
a nucleation context by Frenkel and co-workers to stu
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
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crystallization in the supercooled Lennard-Jones liquid,69–71

force the metastable system to traverse the free-energy
rier reversibly along a reaction coordinate by means o
biasing potential. Such an approach relies on the choice o
appropriate order parameter. Early applications of umbr
sampling to study homogeneous bubble nucleation used
bal order parameters to estimate the height of the free en
barrier.72,73 Using bulk density as the order parameter,72 it
was shown that the calculated free-energy barrier agreed
with classical theory for relatively small degrees of sup
heating and, in fact, vanished at the liquid spinodal. Assu
ing that a bubble was composed solely of empty space,
critical bubble was identified as a web-like, system-spann
cavity whose spatial extent decreased with increasing t
perature. Although a global order parameter makes no
sumptions about the shape or number of critical nuc
formed in the system, it is of course more desirable to us
local order parameter for such calculations because this
vides an unambiguous description of the energetics of fo
ing a single critical bubble. Unfortunately, a microscop
definition capable of identifying localized low-density re
gions within a metastable liquid remains lacking.

The so-called nucleation theorem, originally derived
Oxtoby and Kashchiev74 using general thermodynamic argu
ments, and recently proved on a microscopic basis
Bowleset al.,75,76 is a general result relating the supersatu
tion dependence of the free-energy barrier to the size of
critical nucleus. This provides an accurate means of de
mining the number of molecules in the critical nucleus fro
measured nucleation rates, assuming an Arrhenius-type
pression for the nucleation rate to calculate the barrier hei
Using the nucleation theorem, McGraw and Laaksonne27

derived general thermodynamic scaling laws for drop
nucleation relating how the free-energy barrier and size
the critical nucleus should scale with supersaturation. Sub
quently, Talanquer77 evaluated the constants in the abo
scaling relations by exploiting the fact that the free-ene
barrier vanishes at the spinodal. The scaling relationsh
were verified against DFT predictions and limited expe
mental data for droplet formation.27,77Recently, we extended
these relations to bubble formation and verified them
merically using DFT calculations for homogeneous bub
nucleation in the stretched Lennard-Jones liquid.28 The value
of scaling relationships lies in their ability to validate the
ries of nucleation and correlate experimental data, as
demonstrate in Sec. IV.

While the energetics of bubble formation represents
important aspect of nucleation in superheated liquids, i
important to emphasize that nucleation is an inherently
netic phenomenon. Attempts to address the problem of
mogeneous nucleation kinetically are relatively recent.78–80

Noteworthy among these approaches is the work of Ruck
stein and co-workers.19–26 The key insight provided by this
important body of work is to formulate the calculation
escape rates in terms of a potential well in the immedi
vicinity of the interface separating the emerging embr
from its metastable surroundings. The mean passage tim
molecules across this potential barrier is directly related
the surface evaporation rate, and the steady-state nucle
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rate can be determined from a population balance using
calculated rates of accretion and depletion. Early appl
tions of this kinetic approach addressed homogeneous d
let formation21,22,24 and crystallization19,20,26 in the van der
Waals fluid. Subsequent extension to crystallization in col
dal systems81 reproduced experimentally observed nuc
ation rate behavior, in particular a rate maximum as a fu
tion of density or volume fraction. The kinetic theor
presented in this paper is based on the approach introd
by Ruckenstein and co-workers19,20,26and is discussed in de
tail in the following section.

III. THEORETICAL FRAMEWORK

In this section, the theoretical framework of the kine
theory for homogeneous bubble nucleation is presented.
general outline of this section is as follows. First, the pop
lation balance for homogeneous bubble nucleation is re
mulated and used to derive an expression for the steady-
nucleation rate. This initial step clearly demonstrates the
herent kinetic nature of nucleation phenomena, in particu
the need for knowledge of the surface condensation
evaporation rates. Second, we show that there exists a p
tial field established by the liquid–vapor interface separat
the emerging vapor bubble from the metastable surrou
ings. The key feature of this field is a potential energy mi
mum in the immediate vicinity of the interface, and it
precisely this energy minimum that is exploited to calcul
the surface evaporation rate. In addition, it will be sho
that the dependence of the depth of this minimum on emb
size plays a key role in the physics of embryo growth a
collapse. Last, we derive the expressions needed for com
ing the escape rate from this potential energy well by pos
the calculation in terms of a barrier-escape problem.

A. Steady-state nucleation rate

The key quantity of interest in nucleation theory is t
steady-state nucleation rateJSS, that is to say the rate o
formation of critical nuclei per unit volume. In this subse
tion, we derive an expression for the bubble nucleation r
using a population balance. It is useful first to write t
population balance for droplet formation, a phenomenon
which a clear physical picture is more easily invoked.
liquid-like embryo can be described in terms of the num
of molecules it contains,j. The population balance for drop
let nucleation reads

d

dt
f j~ t !5b j 21f j 21~ t !2a j f j~ t !2b j f j~ t !1a j 11f j 11~ t !,

~3!

where f j (t) is the concentration of embryos containingj
molecules at timet, a j is the evaporation rate of molecule
from the surface of an embryo of sizej, andb j is the con-
densation rate of molecules onto the surface of an embry
size j. The a andb quantities have units of reciprocal time
and already include the appropriate multiplicative factor p
portional to the cluster’s surface area. While the populat
balance is performed most naturally using the number
moleculesj in an embryo as the relevant variable, it is i
structive~and important for what follows! to use the exces
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
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number instead. The excess number in an embryo,Dn, is
defined as the difference between the number of molec
actually in the embryo and the number of molecules pres
in the embryo region if it were occupied by the unifor
metastable medium. The use of this variable is suggeste
the nucleation theorem.74 In its most general form, this rig-
orous thermodynamic result naturally relates the partial
rivative of the free-energy barrier with respect to chemi
potential~supersaturation! to the excess number in the crit
cal nucleus. Note that in the case of droplet nucleation,
for the usual situation in which the density of the sup
cooled vapor is much less than that of the emerging drop
the number of molecules in the embryo and the excess n
ber are virtually identical. However, for the case of bubb
nucleation, the two quantities differ greatly in magnitud
and in fact have different signs. In the present theory
homogeneous bubble nucleation, we derive the steady-s
nucleation rate based on a population balance using the
cess numberDn as the appropriate descriptor of the eme
ing vapor bubble. In other words, we identify a bubble by t
difference between the actual number of molecules that c
stitute it and the number of molecules that would occupy
same region of space at a density equal to that of the b
metastable liquid. For convenience, we leti denote2Dn so
as to work with positive quantities. Because vapor bubb
grow by surface evaporation and decay by surfa
condensation,1 the bubble population balance differs fro
that for droplet nucleation and is given by the followin
expression:

d

dt
f i~ t !5a i 21f i 21~ t !2b i f i~ t !2a i f i~ t !1b i 11f i 11~ t !,

~4!

where f i(t) denotes the concentration ofi-embryos at timet
in the metastable liquid,a i is the evaporation of rate from
the surface of ani embryo, andb i is the corresponding con
densation rate. The fluxJi(t) is defined to be the rate per un
volume at which (i 21)-embryos becomei-embryos

Ji~ t !5a i 21f i 21~ t !2b i f i~ t !. ~5!

At this point, it is convenient to invoke an equilibrium dis
tribution of embryosf i

eq. Contrary to what is done in class
cal nucleation theory, however, the equilibrium distributi
is not invoked as a means for calculating the unknown qu
tity a i from the known quantityb i . Instead, the equilibrium
embryo distribution enters the theory only as a physica
consistent boundary condition for the calculation of t
nucleation rate. An equilibrium distribution of embryosf i

eq

must satisfy the conditionJi(t)50 for all i andt. It therefore
follows that

a i 21f i 21
eq 5b i f i

eq. ~6!

For notational convenience, letFi(t) be the ratio of the ac-
tual to equilibrium concentration ofi-embryos

Fi~ t !5
f i~ t !

f i
eq . ~7!

Note thati is a discrete variable. For mathematical purpos
it is convenient to consider the continuum limit. There a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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various ways to convert the discrete population bala
equation into a continuous one.23,82 Here, we follow the ap-
proach of Frenkel83 and Zeldovich.31 Substituting Eqs.~6!
and ~7! into Eq. ~4!, the population balance becomes

]

]t
f ~g,t !5b~g! f eq~g!@F~g21,t !2F~g,t !#

1b~g11! f eq~g11!@F~g11,t !2F~g,t !#,

~8!

whereg is the continuous analog of the discrete variablei.
Expanding the termsF(g21,t), b(g11), f eq(g11), and
F(g11,t) about g and retaining terms only up to secon
order, Eq. ~8! can be converted into a partial differenti
equation

]

]t
f ~g,t !5

]

]g Fb~g! f eq~g!
]

]g
F~g,t !G . ~9!

Note that this resembles a diffusion equation for which
flux J(g,t) is

J~g,t !52b~g! f eq~g!
]

]g
F~g,t !. ~10!

At steady state, the distribution of embryo sizes is tim
invariant, as is the nucleation rate. As a result, the stea
state nucleation rate is also necessarily independent ofg and
therefore becomes

JSS52b~g! f eq~g!
]

]g
F~g!. ~11!

It is reasonable to expect that the concentration of embr
beyond some sufficiently large size, denoted byG, be van-
ishingly small. Otherwise, a significant portion of the vap
phase will have already formed. Thus, one can write,
sufficiently largeG

F~G!50. ~12!

Furthermore, at the other extreme, an embryo of excess
g50 is indistinguishable from a liquid monomer and the
fore the concentration of these particular embryos is
same as the concentration of liquid monomers. Thus, fog
50

F~0!51. ~13!

Using Eq. ~12! as a boundary condition, Eq.~11! can be
solved forF(g), to yield

F~g!5JSSF E
0

G

dx
1

b~x! f eq~x!
2E

0

g

dx
1

b~x! f eq~x!G .
~14!

Finally, using Eq.~13!, an expression for the steady-sta
nucleation rate can be derived

JSS5
1

*0
G ~dx/@b~x! f eq~x!# !

. ~15!

The equilibrium distribution of embryosf eq(x) can be deter-
mined from Eq.~6!
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
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j 51

g
a j 21

b j
. ~16!

Inserting this into Eq.~15! and lettingG→`, JSS reduces to

JSS5
b~0! f ~0!

*0
`dx•exp@( j 51

x21 ln~b j /a j !#
, ~17!

wheref (0) is just the number density of the bulk metastab
liquid since an embryo whose number excess is zero is s
ply a liquid monomer. It follows thatb~0! is the average
collision rate of single molecule in the liquid medium. No
tice that the steady-state nucleation rate depends expli
on the surface evaporation and condensation rates as a
tion of embryo size, which are purely kinetic quantities. T
equilibrium embryo distribution enters the theory exclusive
through the boundary conditions, Eqs.~12! and ~13!. While
the condensation or arrival rate can be reasonably estim
using the kinetic theory of gases, the main difficulty lies
how to determine the evaporation or escape rate. We add
this problem below.

B. Potential energy field

The evaporation of molecules from a surface can
viewed as an escape from a potential energy well. Within
context of bubble formation, the conceptual situation of
terest consists of a spherical vapor embryo of radiusR and
uniform densityrV situated in a metastable liquid of densi
rL . Molecules are assumed to interact via a spherically sy
metric, pairwise additive potentialu(d) whered denotes the
distance between pairs of molecules. In this work, we use
Lennard-Jones potential, which provides a realistic desc
tion of interactions in monatomic liquids. It is given by

uLJ~d!54«F S s

d D 12

2S s

d D 6G , ~18!

where« is the well depth, ands is the interatomic distance a
which the potential energy is zero. Consider a molecule
the vapor embryo located a distanceq from the interface. In
order to calculate the potential energy felt by this molecu
consider a plane defined by a great circle that contains
centers of the molecule and the vapor bubble as show
Fig. 1. Any great circle whose diameter is the line joining t
molecule of interest and the bubble’s center can be used
this calculation. An infinite number of such circles exist, a
it is not necessary to specify any one in particular. Usin
Cartesian coordinate system, let the origin coincide with
center of the molecule of interest, where they axis is defined
by the unit vector pointing from the molecule to the center
the bubble and thex axis is the unit vector perpendicular t
the y axis lying on the above-defined plane. In this coor
nate system, it naturally follows that the equation of the gr
circle is x21@y2(R2q)#25R2. Note that this two-
dimensional picture is based on the existence of cylindr
symmetry about they axis, which allows us to perform the
full three-dimensional calculation straightforwardly. Assum
ing that rL@rV , the potential energyf(q;R) felt by this
molecule for an arbitrary spherically symmetric potent
u(d) is given by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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f~q;R!52prLF E
2`

2q

dyE
0

`

dx•x•u~d!

1E
2q

2R2q

dyE
AR22@y2~R2q!#2

`

dx•x•u~d!

1E
2R2q

`

dyE
0

`

dx•x•u~d!G , ~19!

whered5Ax21y2 and the factor 2p arises from exploiting
cylindrical symmetry about they axis. In Fig. 2, this poten-
tial energy field is plotted as a function ofq for several
values ofR using the Lennard-Jones interaction potential.
all cases, there exists a minimum in potential energy a
distanceqmin,s from the interface for all embryo sizes. Th
qmin,s is attributed to the fact that a molecule inside t
bubble near the interfacial region feels only an attract

FIG. 1. Schematic setup for calculating the potential energy felt by a m
ecule located a distanceq from the surface of a spherical bubble of radiusR
and densityrV situated in a liquid of densityrL . What is shown is a plane
defined by a great circle that contains the molecule and embryo centers
origin of a Cartesian coordinate system in this plane is fixed at the m
ecule’s center, where they axis is defined as the unit vector pointing towar
the center of the embryo and thex axis is the unit vector perpendicular to th
y axis lying on the above-defined plane. Note that in this two-dimensio
representation there exists cylindrical symmetry about they axis.

FIG. 2. The dimensionless potential energy field plotted as a function
distance from the interfaceq using the Lennard-Jones potential for seve
embryo sizes,R55s ~—!, 10s ~–––!, and 100s ~–—–!.
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force acting on it from one side. This minimum can b
thought to give rise to a thin shell of molecules, the esca
from which determines the surface evaporation rate. N
that the well depth decreases with increasing embryo s
which has an important physical consequence. The inve
relationship between the well depth and embryo size in
cates that the surface evaporation increases with em
size. As will be shown, this effect plays a key role in dete
mining the size of the critical bubble. AsR→`, the potential
field reduces to that of an infinite, planar liquid–vapor inte
face. For the Lennard-Jones fluid, we have verified anal
cally that Eq.~19! reduces to the familiar inverse 9–3 pow
potential84 in the limit asR→`.

While the evaporation rate calculation is posed in ter
of a barrier-crossing problem, the potential calculat
through Eq.~19! and plotted in Fig. 2 does not exhibit
maximum as a function ofq, but instead increases monoton
cally toward the center of the bubble. While there exists
relative maximum at the center of the embryo,q5R, it is
unreasonable to require a molecule to reach the center o
embryo for it to be considered ‘‘dissociated’’ because ext
sion of this explicit barrier-crossing requirement to the plan
liquid–vapor interface whereR→` leads to the unphysica
conclusion that only molecules infinitely far away from th
interface on the low-density side can be considered diss
ated, or belonging to the vapor phase. Although the lack
an explicit potential energy barrier renders the definition o
dissociated molecule somewhat arbitrary, we can const
such a definition rationally based on the following observ
tions of the potential field~Fig. 2!. It can be seen that most o
the steep energy change occurs in the immediate vicinity
the potential energy minimum, and it is in this region whe
the molecule must do most of the work to escape the in
ence of the field. Beyond some distance from the interfa
qdis, the potential field is relatively flat and therefore th
force on the molecule is correspondingly small. Under th
conditions, a molecule can be considered dissociated or
ing escaped from the well for all practical purposes. In mo
precise terms, we defineqdis as the distance at which a mo
ecule has climbed some sufficiently large fractionj of the
potential energy difference between that at the center of
embryo (q5R) and the minimum (q5qmin). Mathemati-
cally, qdis is defined as satisfying the following condition:

f~qdis;R!5j•@f~R;R!2f~qmin ;R!#1f~qmin ;R!.
~20!

In what follows, it is more convenient to express the pote
tial field as a function of radial distance from the center
the vapor embryo,r, rather than the distance from the inte
face,q. Using the fact thatq5R2r , we make the following
transformation:

f~q;R!→f~r ;R!. ~21!

It naturally follows that

r min5R2qmin , ~22!

and
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r dis5R2qdis. ~23!

Finally, we denote byr b the radial position at which the
potential field is zero. Because of the steep repulsive forc
this position, r b corresponds physically to the closest a
proach to the bulk liquid for a molecule in the embryo
interior. Thus, the domain of the potential energy field
interest extends fromr dis to r b , wherer dis,r min,rb .

C. Escape and arrival rates

In this subsection, we derive an expression for the m
passage time of molecules across the potential well, whic
inversely related to the surface evaporation ratea, and gov-
erns the growth of vapor embryos. In addition, the stand
kinetic theory85 expression for the condensation rateb will
be presented here for completeness. The molecules of i
est are those that comprise the thin shell of thicknessh and
densityrshell that tends to form in the vicinity of the potentia
energy minimum. Consider now the motion of an individu
molecule within the potential well region. It undergo
Brownian motion due to collisions with other molecules. T
random nature of such motion is described by the w
known Fokker–Planck equation.86 The Fokker–Planck de
scription is simplified significantly under conditions whe
the velocity distribution is equilibrated~i.e., it becomes Max-
wellian! on a time scale much shorter than that needed
positional equilibration. This is precisely the case when
molecule is situated in a liquid-like environment or wh
there is strong coupling between it and the surrounding
dium. Exploiting this separation of time scales, the positio
evolution of the molecule can be described by theforward
Smoluchowski equation,86 which takes the following form in
a system possessing spherical symmetry:

]

]t
p~r ,tur 0!5

D

r 2

]

]r H r 2 expF2f~r ;R!

kBT G ]

]r

3FexpS f~r ;R!

kBT D p~r ,tur 0!G J , ~24!

wherep(r ,tur 0) is the probability of observing the molecu
at a radial position betweenr andr 1dr at time t given that
it was located atr 0 initially, f(r ;R) is the potential energy
field derived in the previous section, andD is the diffusion
coefficient. It is worth pointing out that we have taken t
origin of the system to coincide with the center of the e
bryo. We are ultimately interested in the probability tha
molecule located initially in the region (r dis,r 0,r b) is lo-
cated outside of it (r ,r dis) at time t. Formally, this corre-
sponds to knowing how the probability changes with t
molecule’s initial position. It is therefore more convenient
deal with the adjoint or backward Smoluchowski
equation87,88 which describes changes inp(r ,tur 0) with re-
spect to the initial position,r 0 . In a system possessin
spherical symmetry, thebackwardSmoluchowski equation
reads
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]t
p~r ,tur 0!5

D

r 0
2 expFf~r 0 ;R!

kBT G ]

]r 0

3H r 0
2 expF2f~r 0 ;R!

kBT G ]

]r 0
p~r ,tur 0!J .

~25!

As shown in Appendix A, the dissociation or escape time
given as a function of initial positiont(r 0 ;R) by the expres-
sion

t~r 0 ;R!5E
r dis

r 0
dy•

expFf~y;R!

kBT G
y2 E

y

r b
dx•

x2

D

•expF2f~x;R!

kBT G . ~26!

The average dissociation time, or the mean passage t
u(R), is simply an average over all possible initial positio
weighted by their Boltzmann factors

u~R!5
1

Z E
r dis

r b
dr0•r 0

2
•expF2f~r 0 ;R!

kBT G•t~r 0 ;R!, ~27!

whereZ is the partition coefficient for a molecule in a po
tential energy field and is given by

Z5E
r dis

r b
dr0•r 0

2
•expF2f~r 0 ;R!

kBT G . ~28!

Note that the mean passage time is a function of emb
size. The surface evaporation ratea(R) is defined as the tota
number of moleculesNshell in the spherical shell divided by
the mean passage timeu(R)

a~R!5
Nshell

u~R!
. ~29!

The number of molecules in the shell,Nshell, is

Nshell54pR2hrshell, ~30!

whereh is the thickness of the shell, andrshell is its number
density. Thus, the surface evaporation rate is

a~R!5
4pR2hrshell

u~R!
. ~31!

Competing against the escape of molecules from the
face is the arrival of molecules from the interior of the vap
bubble to its surface. Note that in the case of bubble form
tion, vapor bubbles shrink by condensation. For simplic
we assume that the vapor contained in the bubble beh
ideally. From the kinetic theory of gases,85 the arrival or
condensation rate of molecules,b, is simply

b~R!5pR2^n&rV , ~32!

whereR is the radius of the vapor bubble,^n& is the mean
velocity which is only a function of temperature, andrV is
the density of the vapor bubble. Note that we have implici
assumed a sticking coefficient of unity. As in classical theo
it is assumed that the density of the vapor bubble is the s
as that of the stable vapor at the given temperature.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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While the region of interest of the potential field exten
from r dis to r b , it is not at all obvious what is the thicknes
h, or density,rshell, of the shell formed by the molecules th
aggregate in the vicinity of the potential well. In this wor
we have assumed that these values are identical to tho
saturation at the given temperature. Therefore, we take
vantage of the fact that the critical bubble in the satura
liquid is infinitely large, and thus the producthrshell can be
determined from the corresponding condition of equality
tween condensation and evaporation rates to yield

hrshell5
^n&rV

sat

4
u~R→`!, ~33!

whererV
sat is the density of the saturated vapor. We assu

that the diffusion coefficientD in the liquid does not chang
appreciably from its value at saturation at the same temp
ture. Therefore, insertion of Eq.~33! into Eq. ~31! to deter-
mine the evaporation ratea(R) results in an expression tha
is independent ofD.

The relative rates of evaporationa(R) and condensation
b(R) dictate whether the vapor embryo grows or shrinks.
Fig. 3, the escape and arrival rates are plotted as a functio
embryo size for a vapor bubble in the metastable liquid. N
that botha andb increase with bubble size, but they do so
different rates. Small vapor bubbles tend to shrink and d
appear into the surrounding medium because the sur
evaporation rate is less than the condensation rate. C
versely, large bubbles tend to grow because the evapora
rate is larger than the condensation rate. Consequentl
some critical embryo sizeR* , the evaporation and conden
sation rates are equal. Given the expressions for the ev
ration and condensation rates as a function of size, they
be inserted into Eq.~17! to calculate the steady-state nucl
ation rateJSS. Notice that while the liquid–vapor interfac
plays a crucial role in the physics, there is no explicit me
tion of surface tension anywhere in the kinetic theory.

FIG. 3. The evaporationa ~—! and condensationb ~–––! rates plotted as a
function of embryo sizeR. The critical vapor bubble corresponds to th
point at which the two curves cross. These calculations were performe
a liquid atkBT/«50.80 andPs3/«520.0126.
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IV. RESULTS AND DISCUSSION

We have applied the current kinetic theory for homog
neous bubble nucleation to the Lennard-Jones liquid un
isotropic tension, as well as to higher-temperature sta
where superheating is caused thermally rather than mech
cally. In our calculations, we use the relatively simple an
lytical equation of state for the Lennard-Jones fluid deriv
from Weeks–Chandler–Andersen perturbation theor89

which has been used primarily in DFT approaches to hom
geneous nucleation in the Lennard-Jones fluid.28,50Our main
focus will be on the Lennard-Jones liquid at sufficiently su
critical temperatures where this equation of state is quite
curate. The liquid state points investigated in this work a
shown in Fig. 4.

Because nucleation is an activated process, the ste
state rate of nucleation is usually expressed in Arrhen
form as in Eq.~1!, where the main quantity governing th
dynamics is the free-energy barrier height or the revers
work of forming a critically sized nucleus,W* . As noted in
Sec. II, most theoretical approaches to nucleation focus
calculating this quantity. From a thermodynamic perspect
the work of forming a critical nucleus should decrease w
increasing penetration into the metastable region and va
at some point, reflecting a crossover from activated to sp
taneous phase transition dynamics. However, the nuclea
rate in the current theory does nota priori assume an Arrhen
ius form. While the kinetic theory does not provide an e
plicit expression for the free-energy barrier, in the compa
sons with the classical predictions that follow, we estimate
effective barrier height by fitting the predicted nucleati
rate to an Arrhenius rate expression.

Recent DFT work on homogeneous bubble nucleat
introduced the quantityDm/Dmspin, called the degree o
metastability, as a natural scaling parameter that quant
the thermodynamic driving force.28 The fundamental nature
of this quantity was suggested by the observation that v

or

FIG. 4. Pressure–temperature projection of the liquid phase diagram fo
Lennard-Jones fluid. The dark solid line is the saturation line, or bino
and the dark dashed line is the liquid spinodal. The points~d! denote the
metastable state points for which the nucleation rate calculations were
formed. Notice that we have examined state points where the liquid is u
tension, as well as conditions where it is heated above its boiling p
~inset!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ous properties of the DFT-predicted critical bubble, such
its work of formation, size, and interfacial thickness, sca
with the degree of metastability in temperature-independ
fashion. Physically, this parameter is a natural measure o
extent of penetration into the metastable region of the liqu
and is defined as

Dm

Dmspin
5

m liq~P,T!2msat~T!

mspin~T!2msat~T!
, ~34!

wherem liq(P,T) is the chemical potential of the bulk meta
stable liquid at the given pressureP and temperatureT,
msat(T) is the coexistence chemical potential at the sameT,
and mspin(T) is the chemical potential of the liquid at th
spinodal, also at the same temperature. An equivalent in
pretation ofDm/Dmspin is that it is simply the normalized
thermodynamic driving force for nucleation. Notice that th
parameter conveniently varies between zero at saturation
unity at the liquid spinodal.

The only adjustable parameter in the theory isj, the
fraction of the energy difference between the potential w
and the effective potential at the center of the embryo th
molecule must surmount before it is considered ‘‘disso
ated.’’ It therefore follows that high values ofj tend to de-
press the surface evaporation rate. Consequently, the
dicted size of the critical nucleus increases withj while the
nucleation rate decreases. Although the value ofj influences
the quantitative predictions of theory, it does not affect
qualitative trends. In the results that follow, we have tak
j50.90 unless noted otherwise, as this was found to y
critical bubble sizes that agreed well with classical the
predictions ~within 610%! at the lowest temperature an
highest degree of metastability investigated. This provide
convenient baseline for comparing the predictions of
classical and kinetic nucleation theories. For reference
kBT/«50.70, the predicted nucleation rate atDm/Dmspin

50.390 using a valuej50.90 is equal to that a
Dm/Dmspin50.402 usingj50.91. This represents a mode
shift in the degree of metastability.

In the current kinetic nucleation theory~KNT!, the criti-
cal bubble corresponds to the condition of equality betw
the surface condensation and evaporation rates,a(R* )
5b(R* ). In Fig. 5, the radius of the critical bubbleR* is
plotted as a function of the degree of metastability at th
reduced temperatures (kBT/«50.70, 0.75, and 0.80! for the
Lennard-Jones liquid under isotropic tension. In all cases,
size of the critical bubble diverges at saturation and
creases with increasing metastability, which is consist
with intuitive expectation. In our previous work on bubb
nucleation we found that the size of the DFT-predicted cr
cal bubble scales independently of temperature with the
gree of metastability.28 The current theory instead predicts
small but non-negligible temperature dependence as ca
seen from the distinct isotherms in Fig. 5. Notice that at fix
value of metastability the radius of the critical bubble i
creases with temperature, a trend also predicted by clas
theory. A direct comparison between the current kinetic a
classical nucleation~CNT! theories is made in Fig. 6, wher
the ratio of the KNT to CNT critical bubble radius is plotte
as a function of metastability. Notice that the two theor
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
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predict similar values for the radius of the critical bubb
~i.e., the ratioRKNT* /RCNT* is not very different from unity!.
The observation that the ratioRKNT* /RCNT* deviates from
unity is actually consistent with the suggestion that the
netically defined critical nucleus, KNT, should differ in siz
from the thermodynamically defined one, CNT.90 Further-
more, notice that the discrepancy between the two pre
tions increases with temperature. We attribute this to the
that at elevated temperatures, the assumption thatrV!rL in
the kinetic theory becomes invalid. This should be anti
pated because the distinction between liquid and va
phases vanishes as the critical temperature is approached
ing rise to a broad, instead of sharp, interfacial region. The
fore, the density of the embryo is no longer negligible, a
the theory should not be expected to work well under th
conditions.

In Fig. 7, the KNT-predicted steady-state nucleation r
JSS/b(0) f (0) is plotted against the degree of metastabil
for the same three temperatures in Figs. 5 and 6. Again,

FIG. 5. The radius of the critical bubbleR* as a function of the degree o
metastabilityDm/Dmspin at three reduced temperatures,kBT/«50.70 ~—!,
0.75 ~–––!, and 0.80~–—–!.

FIG. 6. Ratio of the kinetic nucleation theory~KNT! to classical nucleation
theory ~CNT! critical bubble radius as a function of metastability at thr
reduced temperatures,kBT/«50.70, 0.75, and 0.80.
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state points along each isotherm correspond to a liquid un
isotropic tension~see Fig. 4!. Note that the scale of they axis
spans 50 orders of magnitude. There are several impo
trends to notice in Fig. 7. First, at fixed temperature,
nucleation rate increases with metastability, that is to
with the extent of penetration into the metastable regi
Second, the reduced nucleation rates reach a value of u
indicating that an associated effective free-energy bar
vanishes. Another remarkable feature is the fact that
nucleation rate changes by many orders of magnitude ov
relatively small metastability range, which is consistent w
empirical observations that superheated liquids tend to
dergo a sudden change from apparent stability to catastro
boiling.1,3,16 Finally, notice that at fixed value of metastab
ity the nucleation rate increases with decreasing tempera
In the pressure–temperature plane~Fig. 4!, lines of constant
liquid metastability lie between the binodal (Dm/Dmspin

50) and spinodal (Dm/Dmspin51) curves. Movement along
a line of constant value of metastability in the direction
decreasing temperature corresponds to decreasing pres
or increasing tension~see, e.g., the liquid spinodal in Fig. 4!.
One therefore expects the nucleation rate to increase
decreasing temperature at a fixed value of metastability. T
is a nontrivial result in light of the fact that classical theo
predicts the opposite trend, namely that the nucleation
should decrease with decreasing temperature, due prim
to the inverse temperature dependence of the surface ten
for the planar liquid–vapor interface.

A direct comparison between the nucleation rates p
dicted by KNT and CNT is made in Fig. 8 as a function
metastability at two reduced temperatures (kBT/«50.75 and
0.80! using a value ofj50.97. First, notice that the kineti
theory predicts a more explosive transition from appar
metastability to catastrophic boiling than does class
theory. Second, it is interesting to note that while KNT a
CNT agree relatively well in predicting the size of the critic
bubble, the predicted nucleation rates are dramatically dif
ent. In particular, while one expects better agreement

FIG. 7. Steady-state nucleation rate as predicted by the current ki
theory as a function of metastability for a liquid under isotropic tension
three reduced temperatures,kBT/«50.70 ~—!, 0.75 ~–––!, and 0.80
~–—–!.
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tween the two theories near coexistence, the metastab
values corresponding to agreement between KNT and C
are actually quite appreciable (Dm/Dmspin.0.5) and in-
crease with temperature. However, the rate correspondin
the point at which the two theoretical curves intersect, wh
finite, is zero for practical purposes. Comparison of the
extremely small numbers is not particularly useful. On t
other hand, the discrepancy between the two theoretical r
at even higher values of metastability is substantial and
due to the fact that CNT employs a planar interfacial tens
which is a gross overestimate of the true surface tension
a microscopic embryo. Consequently, classical theory alw
underpredicts the nucleation rate for high values of meta
bility @see Eqs.~1! and ~2!#. We also note that the severa
orders-of-magnitude difference between the rates predi
by KNT and CNT is consistent with similar kinetics-base
theories of nucleation for crystals and droplets.19–24,26While
it is desirable to discern which theory, KNT or CNT, pro
vides a more accurate description of the actual phenome
of homogeneous bubble nucleation, reliable experime
rate data in simple monatomic fluids, the vast majority
which is only relevant to liquids heated above their boili
points, are limited.1,15,91,92 Furthermore, measurements
stretched liquids have been restricted to conditions co
sponding to a very small degree of metastabil
(Dm/Dmspin50.02) where both theories predict vanishin
rates of bubble nucleation.15

An important test of the current kinetic theory is wheth
or not it follows the general scaling laws based on the nuc
ation theorem. While the McGraw–Laaksonen27 scaling re-
lations were originally developed specifically for dropl
nucleation, recent work28 has extended them to homog
neous bubble nucleation. In its most general form,74 the
nucleation theorem is given by

]W*

]Dm
52Dn* , ~35!

whereW* is the free-energy barrier height,Dm is the chemi-
cal potential difference between the metastable and satur
liquid, andDn* is the excess number in the critical bubble.

tic
t

FIG. 8. Comparison of the steady-state nucleation rate predicted by K
~—! and that predicted by CNT~–––! at two reduced temperature
(kBT/«50.75, and 0.80! usingj50.97.
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should be pointed that the differentiation in Eq.~35! is per-
formed at constant temperature. Using this thermodyna
result, one can derive the following scaling relations~see
Appendix B!:

Dn* 5C~T!~Dm!23, ~36!

and

W*

Dm•Dn*
52B~T!~Dm!2, ~37!

where C(T) and B(T) are positive temperature-depende
constants. As shown in Appendix B, a key step in arriving
Eqs.~36! and ~37! involves invoking a mathematical homo
geneity condition.27,28 The excess number in the critica
bubble can be determined by two independent meth
which can serve as verification of self-consistency. The fi
involves the use of the nucleation theorem, Eq.~35!. While
the current kinetic theory does not calculate an explicit fr
energy barrier, an effective free-energy barrier height can
determined by fitting the kinetic nucleation rate to the cl
sical form as in Eq.~1!. In this case, the derivative of th
effective free-energy barrier with respect to the nominal th
modynamic driving force should yield the excess numbe
the critical bubble. In the second method, the excess num
is calculated directly from the critical nucleus condition~i.e.,
the equality between evaporation and condensation rates!. In
this case, the excess number is simply the product of
volume of the bubble and the difference between the sta
vapor and metastable liquid densities. In Fig. 9, the nega
of the excess number,2Dn* , determined by the two meth
ods is plotted as a function of2(Dm)23. Notice that the
indirect and direct methods agree reasonably well. If
steady-state nucleation rate is instead determined usin
population balance based on the actual as opposed to
excess number of molecules in the vapor embryo, this c
dition of self-consistency is violated. Note also that the va
of 2Dn* predicted by the indirect method is always larg
than the direct one. However, the discrepancy between

FIG. 9. Negative of the number excess in the critical bubble,2Dn* as a
function of the nominal thermodynamic driving force,Dm, at kBT/«
50.70. Squares denote the excess number calculated by a classic
Circles denote the excess number calculated directly from the cri
nucleus condition.
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two, which is attributed to the imposition of a function
form to extract the effective free-energy barrier, decrea
with increasing degree of metastability. We should rem
again that it has been suggested that the thermodynami
predicted number excess in the critical nucleus does not
essarily have to agree with that predicted by a kinetics-ba
theory.90 Nevertheless, it is quite clear that the scaling re
tion in Eq. ~36! holds well.

In Fig. 10, we plot the quantityW* /(DmDn* ) versus
(Dm)2 at three temperatures to test the scaling relation in
~37!, where the number excess has been calculated dire
from the critical nucleus condition and the free-energy b
rier has been determined indirectly from a classical fit. T
isotherms are linear to a very good approximation, indicat
that the scaling relation in Eq.~37! is reproduced quite wel
by the kinetic theory. In addition, notice that the slope
each line becomes steeper with increasing temperat
which is also consistent with the droplet nucleation results
McGraw and Laaksonen.27 In recent work on homogeneou
bubble nucleation using density-functional theory,28 we have
shown that the quantity on the left-hand side of Eq.~37!
scales with the degree of metastability independently of te
perature. It was also suggested, using the nucleation theo
and the homogeneity condition arguments as detailed in
pendix B, thatW* /(DmDn* ) should be a quadratic functio
of the degree of metastability. While a quadratic function
form captured the DFT-predicted behavior reasonably wel
was evident that a higher-order functional form was requi
to quantitatively fit the DFT results. In Fig. 11, we plo
W* /(DmDn* ) versus (Dm/Dmspin)

2 at the same three tem
peratures as before. Although it is obvious that there is
temperature-independent scaling behavior with respec
Dm/Dmspin, the quantity W* /(DmDn* ) is described re-
markably well by a quadratic function of the degree of me
stability.

Up to this point, we have only presented nucleation r
calculations for the Lennard-Jones liquid under isotropic t

fit.
al

FIG. 10. Ratio of the free-energy barrier height to the product of nomi
thermodynamic driving force and number excess in the critical bubble
function of the chemical potential difference between the metastable
saturated liquid at three reduced temperatureskBT/«50.70 ~s!, 0.75 ~h!,
and 0.80~L!.
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sion where the driving force for nucleation is of a mechani
origin. In many practical settings, bubble nucleation occ
in liquids that have been heated above their boiling po
where the driving force is of a thermal nature and effe
such as a pronounced temperature-dependent surface te
become important.1 Recall that one of the assumptions in t
kinetic theory is that the density of the stable vapor is mu
less than that of the metastable liquid. This assumption
comes increasingly invalid at elevated temperatures, part
larly close to the critical point. Furthermore, the WCA equ
tion of state for the Lennard-Jones liquid89 is not very
accurate at elevated temperatures, although it is particu
well-suited in describing the properties of the liquid at su
ciently subcritical temperatures. Although the use of a m
sophisticated equation of state will not influence the qual
tive trends that we wish to present here, some caution m
be exercised in using the theory in its present form at th
conditions. In Fig. 12, the steady-state nucleation rate is p
ted as a function of temperature at two different pressu

FIG. 11. Ratio of the free-energy barrier height to the product of nom
thermodynamic driving force and number excess in the critical bubble
function the degree of metastability at three reduced temperatureskBT/«
50.70 ~s!, 0.75 ~h!, and 0.80~L!.

FIG. 12. Steady-state nucleation rate as a function of temperature f
liquid superheated beyond its boiling point at two different external pr
suresPs3/«50.002 93 and 0.004 82.
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(Ps3/«50.002 93 and 0.004 82!. The state points for thes
calculations are given in the inset of Fig. 4. The nucleat
rate increases with temperature along each isobar in ac
with intuitive expectation. Again, notice that the rate i
creases dramatically over a relatively narrow temperat
range. More importantly, at fixed temperature the theory p
dicts that the nucleation rate should increase with decrea
external pressure. This latter trend is remarkable in that
theory is able to capture the correct qualitative behavio
these elevated temperatures without explicitly employ
surface tension.

At the thermodynamic spinodal, the free-energy barr
to nucleation must by definition vanish. This indicates th
the phase transition mechanism changes from nucleation
activated process, to spinodal decomposition, a spontan
one. It is interesting to examine the current kinetic theory
this regard, in particular the connection between the the
and phase stability limits. It should be noted that in real
the transition from metastability to instability occu
smoothly over a region of the metastable portion of the ph
diagram,93–95the spinodal line being a useful idealization f
systems with infinitely long-ranged interactions. By propo
ing a Ginzburg criterion for nucleation which quantifies t
importance of density fluctuations, Binder94,95 has shown
that the width of the transition region from nucleation
spinodal decomposition decreases as the distance to the
cal point (Tc2T) increases. The Ginzburg criterion fo
nucleation states that fluctuations are not important~mean-
field theory is accurate! when the mean-squared density flu
tuation in the inhomogeneous region separating the nuc
from the bulk fluid is much smaller than the square of t
density difference between the liquid and vapor densit
The quantity that measures the relative importance of fl
tuations isl3(12T/Tc)

1/2, wherel is the range of intermo-
lecular interactions in units of the characteristic molecu
size. At sufficiently subcritical numbers, when this quanti
the Ginzburg number, is of order unity, the transition regi
between nucleation and spinodal decomposition is prece
by a ‘‘spinodal nucleation’’ region, which defines the regio
of the phase diagram where the phase transition mecha
is not well-described by classical theory~i.e., at high
supersaturation!.93 The initial boundary of this spinoda
nucleation region should in fact correspond to the condit
that the effective barrier height is of the orderkBT, indicat-
ing that ordinary thermal fluctuations are sufficient to trigg
the phase transformation. Therefore, the set of state po
that satisfies this condition constitutes a kinetically defin
spinodal. In Figs. 13 and 14, we show the calculated kine
spinodal line in the pressure–temperature and temperat
density planes. Notice that at low temperatures, the kin
spinodal corresponds to a metastability value of appro
mately 0.5 and therefore lies midway between the thermo
namic binodal and spinodal. At low enough temperatures,
kinetic spinodal precedes the thermodynamic spinodal,
the thermodynamic spinodal can be viewed as the ultim
limit of stability. As temperature increases, the degree
metastability along the kinetic spinodal also increases
approaches a value of unity~i.e., the kinetic spinodal meet
the thermodynamic spinodal!. For the current version of the
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kinetic nucleation theory, based on the assumption thatrV

!rL , the kinetic spinodal is predicted to intersect the th
modynamic one at a reduced temperature ofkBT/«51.055
(T/Tc'0.70). An alternative criterion for the kinetic spin
odal that avoids the calculation of an effective barrier hei
involves instead the set of points for whichJSS/b(0) f (0)
51. Note that the physical situation that corresponds to
criterion is one where the rate of the phase transformatio
comparable to that of single molecule collisions or fluctu
tions. The kinetic spinodal defined in this way generate
line that is visually indistinguishable from the previously d
fined kinetic spinodal using the criterion that the barr
height is of orderkBT. That the kinetic spinodal does no
extend up to higher temperatures close to the critical poin
ascribed to the simplifying assumption in the theory that

FIG. 13. Kinetic spinodal curve~–—–! in the pressure–temperature proje
tion of the Lennard-Jones phase diagram. The plotted kinetic spinod
defined to be the set of points for which the effective free-energy ba
height is of the orderkBT. The binodal~—! and spinodal~–––! curves are
also shown. For reference, line of constant degree of metastability~–––!,
Dm/Dmspin50.5, is also drawn.

FIG. 14. Kinetic spinodal curve~–—–! in the pressure–temperature proje
tion of the Lennard-Jones phase diagram. The plotted kinetic spinod
defined to be the set of points for which the effective free-energy ba
height is of the orderkBT. The binodal~—! and spinodal~–––! curves are
also shown. For reference, line of constant degree of metastability~---!,
Dm/Dmspin50.5, is also drawn.
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density of the vapor is much less than that of the liqu
which becomes invalid at elevated temperatures. In spite
this, at low temperatures, where the kinetic theory is belie
to capture the relevant physics of nucleation, the trends
clear: the kinetic spinodal always precedes the thermo
namic one and approaches it with increasing temperatur

V. CONCLUSIONS

We have presented a kinetic theory for homogene
bubble nucleation. The theory is based upon explicit cal
lation of surface evaporation and condensation rates.
latter is calculated from the kinetic theory of gases, while
former is calculated by exploiting the potential energy mi
mum in the field established by the interface separating
emerging vapor embryo from the metastable liquid. The s
face evaporation rate is directly related to the rate of esc
of molecules from the potential-well region. Knowledge
these rates as a function of embryo size allows them to
incorporated directly into a population balance based on
number excess in the emerging bubble. For the Lenna
Jones liquid under isotropic tension, the kinetic theory p
dicts that the nucleation rate increases with degree of m
stability at fixed temperature, while the size of the critic
nucleus decreases. Comparison with classical theory als
veals a markedly different metastability dependence of
overall nucleation rate. An important nontrivial predictio
made by this theory that classical theory fails to predict
that the nucleation rate increases with decreasing temp
ture at fixed degree of metastability. For the Lennard-Jo
liquid heated above its boiling point, the predicted nucleat
rate increases with temperature at fixed external press
and also increases with decreasing external pressure at
temperature. We have also explored the connection of K
to phase stability by mapping out kinetically predicted sp
odal curves. For the state points explored, the kinetic sp
odal always precedes the thermodynamic spinodal, and
proaches it with increasing temperature. Finally,
important aspect of this work concerns the observation
the predictions of the kinetic theory follow the thermod
namic scaling relations derived for bubble formation. A
though we have used the scaling relations to validate
kinetic theory, the opposite could also be said, namely t
the generality of the scaling relations is suggested by the
that the predictions of an independent kinetics-based the
adhere to them. Extension of these relations to more com
systems such as mixtures can provide a powerful anal
tool, as has been recently suggested by Mulleret al.96 in
their studies of bubble nucleation in binary polymer so
tions.

While the kinetic theory presented in this paper rep
sents a necessary step towards rigorous, kinetics-based
ment of bubble nucleation, there are important aspects of
theory that deserve critical evaluation. An important featu
is the assumption that the density of the critical bubble is t
of the stable vapor. Density-functional theory has shown t
this is only a reasonable assumption up to moderate pen
tions into the metastable region. Incorporation of DF
predicted density profiles for the critical bubble into the c
culation of the potential energy field deserves investigati
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A crucial aspect of this theory is the consideration of eva
ration and condensation events involving only single m
ecules. Inclusion of multiple-molecule events, while difficu
should not be disregarded. Molecular dynamics simulati
of supercooled vapors have revealed that such events ar
completely negligible in the case of droplet nucleation.78 The
relevance of such events to bubble nucleation remains
known.

Hydrodynamic effects can in principle play a role in th
kinetics of bubble formation.97,98 This is because the growt
and shrinkage of embryos occurs in a liquid that posse
nonzero viscosity and is denser than the bubble. This eff
which could prove significant for large enough bubbles, h
not been considered in the present theory, and should be
subject of future work.
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APPENDIX A: DISSOCIATION TIME

In this Appendix, we derive the dissociation or esca
time of a molecule within the potential well as a function
its initial position,t(r 0 ;R). Let Q(tur 0) denote the surviva
probability, that is to say the probability that a molecule in
tially in the potential well region remains there after timet.
Mathematically, it is defined as

Q~ tur 0!5E
r dis

r b
dr•r 2

•p~r ,tur 0! for r dis,r 0,r b . ~A1!

Note that the survival probability has the following pro
erties:

Q~0ur 0!51 for r dis,r 0,r b , ~A2!

and

Q~ t→`ur 0!50 for r dis,r 0,r b . ~A3!

Therefore, the probability that a molecule initially located
the potential-well region has escaped between time 0 andt is
just 12Q(tur 0). Thus, the mean escape time as a function
initial position, t(r 0 ;R), is

t~r 0 ;R!5E
0

`

dt•t•
]

]t
@12Q~ tur 0!#. ~A4!

Integrating by parts and using the properties ofQ(tur 0), the
mean escape timet(r 0 ;R) reduces to

t~r 0 ;R!5E
0

`

dt•Q~ tur 0!. ~A5!

We now make use of the backward Smoluchowski eq
tion, Eq.~25!, by multiplying both sides of it byr 2 and then
integrating with respect tor over the potential well region to
obtain
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]

]t
Q~ tur 0!5

D

r 0
2 expFf~r 0 ;R!

kBT G ]

]r 0

3H r 0
2 expF2f~r 0 ;R!

kBT G ]

]r 0
Q~ tur 0!J . ~A6!

Finally, integrating both sides with respect to timet from
0 to ` yields a differential equation for the mean dissociati
time t(r 0 ;R)

D

r 0
2 expFf~r 0 ;R!

kBT
G d

dr0
H r 0

2 expF2f~r0;R!

kBT
G d

dr0

t~r0;R!J521.

~A7!

The above differential equation is solved using a ‘‘no flu
or ‘‘reflective’’ boundary condition atr 05r b

dt~r 0 ;R!

dr0
U

r 05r b

50, ~A8!

which physically restricts molecules from moving direct
into the surrounding liquid, and a ‘‘perfect absorption
boundary condition atr 05r dis

t~r 0 ;R!ur 05r dis
50, ~A9!

which simply states that molecules beyondr dis are free from
the influence of the potential field. Solving Eq.~A7! with the
two boundary conditions yields an expression for the me
dissociation time as a function of initial positiont(r 0 ;R)

t~r 0 ;R!5E
r dis

r 0
dy•

exp@f~y;R!/kBT#

y2 E
y

r b
dx•

x2

D

•expF2f~x;R!

kBT G . ~A10!

APPENDIX B: SCALING RELATIONS

In this Appendix, we reproduce the key steps in derivi
the scaling relations given in Eqs.~36! and~37!. To this end,
it is postulated that the relationship between the free-ene
barrier height,W* , the nominal thermodynamic driving
force. Dm, and the number excess in the critical embry
Dn* , can be written in the following form:

W*

Dm•Dn*
5

1

2
2h~Dn* ,Dm!, ~B1!

where the unknown functionh(Dn* ,Dm) describes the de
parture from classical behavior. Note thath50 corresponds
to agreement with classical nucleation theory. Differentiat
this equation with respect toDm at constant temperature an
using the nucleation theorem, Eq.~35!, yields the following
differential equation:

3Dn* 1Dm•

d

dDm
Dn* 52

d

dDm
@Dm•Dn*

•h~Dn* ,Dm!#. ~B2!
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Becauseh(Dn* ,Dm) is unknown, it is assumed that eac
side of the above equation vanishes identically, and there
each side can be solved separately forDn* and
h(Dn* ,Dm), yielding

Dn* 5C~T!•~Dm!23, ~B3!

and

Dn* •h~Dn* ,Dm!5D~T!•~Dm!21, ~B4!

whereC(T) andD(T) are temperature-dependent consta
of integration. Note that Eq.~B3! is precisely the scaling
relation given in Eq.~36!. Substitution of Eqs.~B3! and~B4!
into Eq. ~B1! yields the second scaling relation given in E
~37!.

1P. G. Debenedetti,Metastable Liquids: Concepts and Principles~Princ-
eton University Press, Princeton, N.J., 1996!.

2D. H. Trevena,Cavitation and Tension in Liquids~Hilger, Bristol, En-
gland; Philadelphia, 1987!.

3R. C. Reid, Science203, 1265~1979!.
4D. Kivelson and H. Reiss, J. Phys. Chem. B103, 8337~1999!.
5D. S. Corti and P. G. Debenedetti, Chem. Eng. Sci.49, 2717~1994!.
6D. S. Corti and P. G. Debenedetti, Ind. Eng. Chem. Res.34, 3573~1995!.
7F. H. Stillinger, Phys. Rev. E52, 4685~1995!.
8D. S. Corti, P. G. Debenedetti, S. Sastry, and F. H. Stillinger, Phys. Re
55, 5522~1997!.

9P. A. Lush, J. Fluid Mech.135, 373 ~1983!.
10Y. L. Chen and J. Israelachvili, Science252, 1157~1991!.
11M. Shusser and D. Weihs, Int. J. Multiphase Flow25, 1561~1999!.
12H. Y. Kwak and R. L. Panton, J. Phys. D18, 647 ~1985!.
13S. J. Putterman, Sci. Am.272, 46 ~1995!.
14K. S. Suslick, Science247, 1439~1990!.
15C. T. Avedisian, J. Phys. Chem. Ref. Data14, 695 ~1985!.
16R. C. Reid, Am. Sci.64, 146 ~1976!.
17G. D. N. Overton, P. R. Williams, and D. H. Trevena, J. Phys. D17, 979

~1984!.
18D. D. Joseph, J. Fluid Mech.366, 367 ~1998!.
19B. Nowakowski and E. Ruckenstein, J. Colloid Interface Sci.139, 500

~1990!.
20E. Ruckenstein and B. Nowakowski, J. Colloid Interface Sci.137, 583

~1990!.
21E. Ruckenstein and B. Nowakowski, Langmuir7, 1537~1991!.
22B. Nowakowski and E. Ruckenstein, J. Chem. Phys.94, 8487~1991!.
23B. Nowakowski and E. Ruckenstein, J. Colloid Interface Sci.142, 599

~1991!.
24B. Nowakowski and E. Ruckenstein, J. Chem. Phys.94, 1397~1991!.
25B. Nowakowski and E. Ruckenstein, J. Phys. Chem.96, 2313~1992!.
26G. Narsimhan and E. Ruckenstein, J. Colloid Interface Sci.128, 549

~1989!.
27R. McGraw and A. Laaksonen, Phys. Rev. Lett.76, 2754~1996!.
28V. K. Shen and P. G. Debenedetti, J. Chem. Phys.114, 4149~2001!.
29M. Berthelot, Ann. Chim. Phys.30, 232 ~1850!.
30M. Blander and J. L. Katz, J. Stat. Phys.4, 55 ~1972!.
31M. Blander and J. L. Katz, AIChE J.21, 833 ~1975!.
32F. H. Stillinger, J. Chem. Phys.38, 1486~1963!.
33I. Kusaka and D. W. Oxtoby, J. Chem. Phys.110, 5249~1999!.
34P. Schaaf, B. Senger, J. C. Voegel, and H. Reiss, Phys. Rev. E60, 771

~1999!.
35P. R. ten Wolde, M. J. Ruizmontero, and D. Frenkel, Phys. Rev. Lett.75,

2714 ~1995!.
36S. Auer and D. Frenkel, Nature~London! 409, 1020~2001!.
37J. X. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, W. B. Russell, an

P. M. Chaikin, Nature~London! 387, 883 ~1997!.
38P. N. Pusey, W. Vanmegen, P. Bartlett, B. J. Ackerson, J. G. Rarity, an

M. Underwood, Phys. Rev. Lett.63, 2753~1989!.
39P. R. ten Wolde and D. Chandler, Proc. Natl. Acad. Sci. U.S.A.99, 6539

~2002!.
40K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B103, 4570

~1999!.
41D. M. Huang and D. Chandler, Phys. Rev. E61, 1501~2000!.
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
re

s

.

E

S.

42D. M. Huang, P. L. Geissler, and D. Chandler, J. Phys. Chem. B105, 6704
~2001!.

43D. Chandler, Nature~London! 417, 491 ~2002!.
44S. Punnathanam and D. S. Corti, Ind. Eng. Chem. Res.41, 1113~2002!.
45N. R. Kestner, J. Jortner, M. H. Cohen, and S. A. Rice, Phys. Rev.140,

A56 ~1965!.
46C. M. Surko and F. Reif, Phys. Rev.175, 229 ~1968!.
47A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys.74, 2559~1981!.
48P. Harrowell and D. W. Oxtoby, J. Chem. Phys.80, 1639~1984!.
49D. W. Oxtoby and R. Evans, J. Chem. Phys.89, 7521~1988!.
50X. C. Zeng and D. W. Oxtoby, J. Chem. Phys.94, 4472~1991!.
51C. K. Bagdassarian and D. W. Oxtoby, J. Chem. Phys.100, 2139~1994!.
52Y. C. Shen and D. W. Oxtoby, J. Chem. Phys.104, 4233~1996!.
53A. Laaksonen and D. W. Oxtoby, J. Chem. Phys.102, 5803~1995!.
54X. C. Zeng, D. W. Oxtoby, and E. Cheng, J. Chem. Phys.104, 3726

~1996!.
55L. A. Baez and P. Clancy, J. Chem. Phys.102, 8138~1995!.
56S. Park, J. G. Weng, and C. L. Tien, Microscale Thermophys. Eng.4, 161

~2000!.
57S. H. Park, J. G. Weng, and C. L. Tien, Int. J. Heat Mass Transf.44, 1849

~2001!.
58M. Matsumoto, S. Saito, and I. Ohmine, Nature~London! 416, 409

~2002!.
59S. C. Gay, E. J. Smith, and A. D. J. Haymet, J. Chem. Phys.116, 8876

~2002!.
60N. Waheed, M. S. Lavine, and G. C. Rutledge, J. Chem. Phys.116, 2301

~2002!.
61K. Laasonen, S. Wonczak, R. Strey, and A. Laaksonen, J. Chem. P

113, 9741~2000!.
62S. Toxvaerd, J. Chem. Phys.115, 8913~2001!.
63T. Kinjo and M. Matsumoto, Fluid Phase Equilib.144, 343 ~1998!.
64B. Chen, J. I. Siepmann, K. J. Oh, and M. L. Klein, J. Chem. Phys.116,

4317 ~2002!.
65B. Chen, J. I. Siepmann, K. J. Oh, and M. L. Klein, J. Chem. Phys.115,

10903~2001!.
66P. R. ten Wolde, D. W. Oxtoby, and D. Frenkel, Phys. Rev. Lett.81, 3695

~1998!.
67P. R. ten Wolde, D. W. Oxtoby, and D. Frenkel, J. Chem. Phys.111, 4762

~1999!.
68I. Kusaka, Z. G. Wang, and J. H. Seinfeld, J. Chem. Phys.108, 3416

~1998!.
69J. S. Vanduijneveldt and D. Frenkel, J. Chem. Phys.96, 4655~1992!.
70P. R. ten Wolde, M. J. RuizMontero, and D. Frenkel, Faraday Discu

104, 93 ~1996!.
71P. R. ten Wolde, M. J. RuizMontero, and D. Frenkel, J. Chem. Phys.104,

9932 ~1996!.
72V. K. Shen and P. G. Debenedetti, J. Chem. Phys.111, 3581~1999!.
73I. Kusaka and D. W. Oxtoby, J. Chem. Phys.111, 1104~1999!.
74D. W. Oxtoby and D. Kashchiev, J. Chem. Phys.100, 7665~1994!.
75R. K. Bowles, R. McGraw, P. Schaaf, B. Senger, J. C. Voegel, and

Reiss, J. Chem. Phys.113, 4524~2000!.
76R. K. Bowles, D. Reguera, Y. Djikaev, and H. Reiss, J. Chem. Phys.115,

1853 ~2001!.
77V. Talanquer, J. Chem. Phys.106, 9957~1997!.
78P. Schaaf, B. Senger, J. C. Voegel, R. K. Bowles, and H. Reiss, J. Ch

Phys.114, 8091~2001!.
79G. K. Schenter, S. M. Kathmann, and B. C. Garrett, J. Chem. Phys.110,

7951 ~1999!.
80G. K. Schenter, S. M. Kathmann, and B. C. Garrett, Phys. Rev. Lett.82,

3484 ~1999!.
81N. M. Dixit and C. F. Zukoski, Phys. Rev. E64, 041604~2001!.
82B. Shizgal and J. C. Barrett, J. Chem. Phys.91, 6505~1989!.
83J. Frenkel,Kinetic Theory of Liquids~Clarendon, Oxford, 1946!.
84J. S. Rowlinson and B. Widom,Molecular Theory of Capillarity~Oxford,

Oxfordshire, 1982!.
85F. F. Abraham,Homogeneous Nucleation Theory; The Pretransiti

Theory of Vapor Condensation~Academic, New York, 1974!.
86S. Chandrasekhar, Rev. Mod. Phys.15, 1 ~1943!.
87N. Agmon, J. Chem. Phys.81, 3644~1984!.
88C. W. Gardiner,Handbook of Stochastic Methods for Physics, Chemis

and the Natural Sciences, 2nd ed.~Springer, Berlin; New York, 1990!.
89J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.54, 5237

~1971!.
90K. Nishioka, Phys. Rev. E52, 3263~1995!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



s.

783J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 Homogeneous bubble nucleation
91V. P. Skripov,Metastable Liquids~Wiley, New York, 1973!.
92V. G. Baidakov and V. P. Skripov, Exp. Therm. Fluid Sci.5, 664 ~1992!.
93C. Unger and W. Klein, Phys. Rev. B29, 2698~1984!.
94K. Binder, Phys. Rev. A29, 341 ~1984!.
95K. Binder, Physica A140, 35 ~1986!.
Downloaded 28 May 2003 to 128.112.35.162. Redistribution subject to A
96M. Muller, L. G. MacDowell, P. Virnau, and K. Binder, J. Chem. Phy
117, 5480~2002!.

97Y. Kagan, J. Phys. Chem.34, 42 ~1960!.
98C. E. Brennen,Cavitation and Bubble Dynamics~Oxford University

Press, Oxford, 1996!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


