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Resolving vibrational and structural contributions to isothermal
compressibility
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The well-known and general ‘‘compressibility theorem’’ for pure substances relateskT

52(] ln V/]p)N,T to a spatial integral involving the pair correlation functiong(2). The isochoric
inherent structure formalism for condensed phases separatesg(2) into two fundamentally distinct
contributions: a generally anharmonic vibrational part, and a structural relaxation part. Only the
former determineskT for low-temperature crystals, but both operate in the liquid phase. As a
supercooled liquid passes downward in temperature through a glass transition, the structural
contribution tokT switches off to produce the experimentally familiar drop in this quantity. The
Kirkwood–Buff solution theory forms the starting point for extension to mixtures, with
electroneutrality conditions creating simplifications in the case of ionic systems. ©1998 American
Institute of Physics.@S0021-9606~98!50634-4#
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I. INTRODUCTION

The fundamental task of statistical mechanics is to re
macroscopic observables to molecular-level properties.
of the notable connections of this sort, usually derived in
grand canonical ensemble context, expresses the isothe
compressibility kT in terms of number ~or density!
fluctuations,1

kBTkT /V5^~N2^N&!2/^N&2. ~1.1!

HereN, V, kB , andT have their usual meanings as numbe
of molecules, system volume, Boltzmann’s constant, and
solute temperature; and

kT52~1/V!~]V/]p!N,T . ~1.2!

Apparently Ornstein and Zernike2 were the first to recast th
right member of Eq.~1.1! as a spatial integral involving th
two-point density–density correlation function. In mode
terminology3,4 this transforms Eq.~1.1! into

rkBTkT511rE @g~2!~r !21#dr , ~1.3!

wherer5^N&/V is the mean number density, andg(2) is the
molecular pair correlation function. The integral in this la
expression covers all space, andg(2) is to be interpreted as
the infinite-system limit function. The compressibility rel
tion ~1.3! is noteworthy in that it contains no explicit appea
ance of molecular interactions.

Most applications that use relation~1.3! involve liquids
under conditions of thermal equilibrium. Deviations
g(2)(r ) from its asymptote unity denote short-range order
the arrangement of molecules comprised in the liquid,
well as long-ranged density fluctuations if the fluid syste
exists near a critical point. The relation is equally true
quantum fluids as it is for classical fluids, provided for t
3980021-9606/98/109(10)/3983/6/$15.00
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former thatg(2) is obtained from the diagonal elements
the pair density matrix.5 Although certain delicacies of inter
pretation are involved, we point out below that the compre
ibility relation ~1.3! also applies to the crystalline soli
phase.

MeasuredkT values for common liquids vary conside
ably, but normally increase with temperature at const
pressure.6 Water is exceptional, withkT declining with in-
creasing temperature below 46 °C at atmospheric pressu6,7

No doubt such a distinction enjoyed by water arises from
peculiar intermolecular interactions and the characteri
open structures they produce at low enough temperatures
pressures. That situation highlights the desirability of isol
ing specific structural contributions tokT for water, and in-
deed for all liquids regardless of whether they are conv
tional or unusual. This paper provides a theoretical strat
for effecting that separation.

The following Sec. II shows that by casting the proble
in the language of inherent structures, there emerge natu
two contributions tokT , one structural and one ‘‘vibra
tional.’’ Section III applies this separation to the low
temperature crystal, for which inherent structure is subst
tially unique, and the vibrational effects are described
terms of noninteracting harmonic normal modes~phonons!.
Section IV considers the extension of compressibility re
tion ~1.3! to supercooled liquids and to the glasses they fo
below a glass transition temperature. Finally, Sec. V off
some discussion of related problems, and some conclus
An Appendix contains technical details for a simple Deby
spectrum analysis of the vibrational contribution to co
pressibility.

II. ROLE OF INHERENT STRUCTURES

Although generalization to more complex materials p
sents no basic problems, for simplicity we will restrict atte
3 © 1998 American Institute of Physics
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tion to the case of structureless~spherically symmetric! par-
ticles. LetFN(r1¯rN) be the potential energy function fo
interaction among theN particles when they are located
positions r1¯rN . By constructing a steepest-descent p
for the FN hypersurface, any system configurationr1¯rN

~with only zero-measure exceptions! can be mapped
uniquely onto the corresponding ‘‘quenched’’ configurati
r1q¯rNq of an inherent structure.8–11 More specifically, the
constant-volume steepest descent equations

dr i~s!/ds5¹ iFN@r1~s!¯rN~s!# ~1< i<N! ~2.1!

for s>0, with r1¯rN as initial conditions, converge to th
quenched configurationr1q¯rNq as s approaches infinity.
The set of all system configurations that map to the sameFN

minimum constitutes the basin of attraction for that mi
mum. The mapping itself serves to remove intrabasin ‘‘
brational’’ displacements that have taken the particles aw
from positions of mechanical equilibrium, and that may
deed be quite anharmonic in some cases.

We can imagine subjecting each representative confi
ration from the ensemble that producedg(2)(r ) to the steep-
est descent mapping. The resulting collection of quenc
configurations offers a representative sampling of inher
structures for the initial thermodynamic state, and posse
its own quenched pair correlation functiongq

(2)(r ). By con-
struction, this process removes the influence of vibratio
deformation from the pattern of short-range order. P
experience12–17 has revealed thatgq

(2)(r ) tends to exhibit a
strongly enhanced vision of short-range order in compari
with g(2)(r ).

Equation~1.3! trivially transforms into the following:

rkBTkT511rE @gq
~2!~r !21#dr1rE Dg~2!~r !dr ,

~2.2!

where

Dg~2!~r !5g~2!~r !2gq
~2!~r ! ~2.3!

represents the effect of purely vibrational ‘‘smoothing’’
short-range molecular order, and for fluids at least is likely
diminish to near zero beyond third or fourth neighbor she
The first term, unity, in the right member, is a pure kine
contribution tokT ; the following integral captures the en
tirety of the structural component; and the last, integral te
provides the vibrational part ofkT .

III. CRYSTAL COMPRESSIBILITY

Although the compressibility relation,~1.1! or ~1.2!, is
usually invoked in connection with fluid state studies, it
valid for all equilibrium phases. In particular it describes t
crystal phase~or phases! that obtains for any pure substan
~exclusive of He at low pressure! at sufficiently low tempera-
ture. For crystals,kT is but one of several isothermal elast
constants, the number of which depends on the symmetr
the crystalline phase~3 for cubic symmetry, up to 18 fo
triclinic symmetry18!.

If absolute temperatureT is sufficiently low, the inherent
structure of the crystal will be substantially unique~particle
permutations are irrelevant in the present context!, and will
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correspond to the absolute minimum of the potential ene
function. Vibrations are the familiar phonons of solid sta
physics,19 and can be viewed accurately as independent h
monic normal modes of motion.

The geometric structure of the perfect crystal may
characterized by distancesr n and coordination numbersZn

for the successive shells of neighbors (n51,2,...) around any
particle. Assuming that only one crystallographic partic
type occurs in the lattice,gq

(2) will then have the following
form:

gq
~2!~r !5~4pr!21(

n51

`

Znr n
22d~r 2r n!, ~3.1!

in other words a suitably weighted radial Dirac delta functi
for each coordination shell. The presence of such sing
terms in Eq.~3.1! nominally seems problematic for conve
gence of the integrals in Eq.~2.2! that containgq

(2) . How-
ever, we can properly assure convergence by reinterpre
Eq. ~2.2! in the following manner:

rkBTkT511r lim
a→01

E exp~2ar 2!@gq
~2!~r !21#dr

1r lim
a→01

E exp~2ar 2!Dg~2!~r !dr . ~3.2!

The first integral in the right member of the last equati
can readily be evaluated numerically, as a function of c
vergence parametera, for any simple lattice. Using expres
sion ~3.1!, this integral reduces as follows:

I ~r22/3a![rE exp~2ar 2!@gq
~2!~r !21#dr

5(
n

Zn exp~2ar n
2!2r~p/a!3/2. ~3.3!

Figure 1 displaysI for the face-centered cubic lattice, show
ing how this quantity converges rapidly to21 asa.0 de-
clines toward 0. The same behavior has been observed
other lattices with other symmetries, and merely illustra
the ‘‘missing particle phenomenon.’’ The functiongq

(2) in-
cludes a contribution from every particle in the periodic la
tice except for the one at the origin; consequently,

FIG. 1. Plot of the quantityI (r22/3a) defined in Eq.~3.3!, for the specific
case of the face-centered cubic lattice.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



f

b-

he
a
a
e

ow
s

n-

or

ca
e
s

a

ic

u

r
-

th
hi
o

se
a

p-
.
l
ss-

per-

This
y a

ng
at
hat
or-

ts
ta-
a-
uch

by
ned
the

es-

in

nc-
licit

es
nd-
us
tan-
ity,
ble

ter-
ing
ect

ed

es
-
f 2
ss
ny-
or-

gion

3985J. Chem. Phys., Vol. 109, No. 10, 8 September 1998 Stillinger, Debenedetti, and Sastry
lim
a→01

I ~r22/3a!521. ~3.4!

Owing to the last result, Eq.~3.4!, we expect cancellation o
the first two terms in the right member of Eq.~3.2!, whenT
is sufficiently low that the perfect crystal obtains. Equili
rium concentrations of point defects~specifically vacancies
and interstitials! appear in crystals, but even just below t
melting point their concentrations are typically very low on
per-lattice-site basis.20 Furthermore, point defects have
positive creation energy«, so their concentrations should b
dominated by Boltzmann factors exp(2«/kBT), vanishing
more strongly asT→0 than any positive power ofT. The
consequence of these considerations is that in the l
temperature limit, the isothermal compressibility of the cry
tal must emerge strictly from the vibrational contribution i
tegral in Eq.~3.2!,

kT5 lim
a→01

~kBT!21E exp~2ar 2!Dg~2!~r !dr . ~3.5!

It is easy to see that the integral in Eq.~3.5! must be propor-
tional to kBT, thereby cancelling the inverse of this fact
which multiplies it, and leaving a finitekT for the crystal in
the low-temperature limit. The integral measures the lo
accumulation~or reduction! in matter about a central particl
due to the action of independent normal modes. Con
quently, we must be able to write~compare results in the
Appendix!,

E exp~2ar 2!Dg~2!~r !dr5(
m

Cm~a!^am
2 &, ~3.6!

wherem indexes the normal modes, whose amplitudes
given by theam , respectively. The weightsCm(a) depend
on the mode wave vectors and polarizations, and in part
lar will vanish for pure transverse waves. Equation~3.6! rec-
ognizes that the local density fluctuation effect sought m
depend on amplitude squared. The thermal averages
volved have the form

^am
2 &5

*am
2 exp~2Kmam

2 /2kBT!dam

* exp~2Kmam
2 /2kBT!dam

5kBT/Km , ~3.7!

whereKm is a restoring-force constant for modem. Substi-
tuting from Eqs.~3.7! and ~3.6!, one sees that the facto
(kBT)21 is cancelled in Eq.~3.5! to leave the formal expres
sion for low-temperature crystal compressibility,

kT5(
m

Cm~0!/Km . ~3.8!

IV. SUPERCOOLED LIQUIDS AND GLASSES

In contrast to the perfect crystal case examined in
preceding Sec. III, application of steepest-descent quenc
to the liquid phase generates a diverse collection of am
phous inherent structures.13–15,21This is true whether the liq-
uid is in a strict equilibrium state~i.e., above its melting
temperatureTm), or is supercooled (T,Tm). The irregular-
ity of the inherent structures as well as their diversity cau
the correspondinggq

(2)(r ) to be smooth and continuous as
Downloaded 22 Aug 2001 to 128.112.35.162. Redistribution subject to A
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function ofr, just as is its precursorg(2)(r ). In particular this
means that bothgq

(2) and g(2)(r ) smoothly approach unity
with increasingr, so that the convergence-assuring limit o
eration invoked earlier in Eq.~3.2! is no longer necessary
Hence we can revert to Eq.~2.2! for separation of vibrationa
and inherent structural contributions to isothermal compre
ibility in liquids.

Under conventional circumstances, metastable su
cooled liquids have finite~but often very long! lifetimes be-
fore they succumb to phase-changing nucleation events.
permits experiment to characterize supercooled liquids b
substantial variety of reproducible measurements.22 The
theory for the quasiequilibrium states of liquid supercooli
is considerably simplified by introducing constraints th
force the many-particle system to remain permanently in t
portion of the multidimensional configuration space that c
responds to non-nucleated~crystallite-free! inherent
structures.9,11 Application of these mathematical constrain
converts the quasiequilibrium status to true equilibrium s
tus, while causing virtually no effect on reproducibly me
surable properties of the liquid. We shall assume that s
constraints are present for the remainder of this section.

The virial equation of state for the pressure is affected
the presence of constraints. Specifically, constraints desig
to stabilize supercooled liquids generate an extra term in
equation of state beyond those conventionally occurring.23 If
kT were to be obtained via this route, performing the nec
sary partial derivative required by its definition Eq.~1.2!, the
constraint would continue to make an explicit appearance
the result. Equations~1.3! and ~2.2!, however, stand in re-
freshing contrast; provided the correct pair correlation fu
tion for the constrained ensemble is used, no such exp
constraint contributions are needed to evaluatekT .

The fundamental diversity of inherent structur
quenched from the liquid phase carries with it a correspo
ing fluctuation in number density. Put simply, amorpho
packings incorporate distinct regions that deviate subs
tially above as well as below the overall number dens
owing to the vast number of ways that mechanically sta
arrangements of particles can be achieved.23,24This contrasts
with the single, uniform density, inherent structure charac
izing the low-temperature crystal described in the preced
section. As a result of this density fluctuation we now exp
to find

11rE @gq
~2!~r !21#dr.0 ~4.1!

for the liquid, as opposed to 0 for the perfect crystal impli
by Eq. ~3.4!.

As the temperature of a supercooled liquid declin
through its glass transition atTg , the isothermal compress
ibility suddenly drops. The change can involve a factor o
or more.25 The generally accepted explanation of the gla
transition and associated phenomena is that the ma
particle system becomes kinetically trapped in a small p
tion of the available configuration space.22 In the present
inherent structure representation, this means that theT.Tg

quasiergodic sampling of the amorphous, constrained, re
of configuration space ceases belowTg . At most, the low-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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temperature glass can explore only a tiny subset of
steepest-descent basins. In particular, this subset woul
connected across low potential energy barriers that are a
ciated with the localized switching of small groups of pa
ticles, the so-called two-level systems.26,27

The capacity of the many-particle system to experie
structure-related density fluctuations thus is ‘‘frozen out’’ f
T,Tg . This leaves only the vibrational contribution tokT

operative in the glass state, analogous to the situation fo
in the preceding section for the low-temperature crystal@cf.
Eq. ~3.5!#. Consequently, the sudden drop inkT at Tg can be
identified,

DkT5kT
~ l !2kT

~g!5~kBTg!21H11E @gq
~2!~r !21#dr J .

~4.2!
Therefore, in the glass we have

kT
~g!5~kBT!21E Dg~2!~r !dr ~T,Tg!. ~4.3!

An Appendix supplies a simple Debye-spectrum estimate
this remaining contribution, the vibrational compressibility

V. CONCLUDING REMARKS

The analysis presented above concerns isothermal c
pressibility in a single-component system, for which ba
relation ~1.3! is appropriate. The generalization of that re
tion to multicomponent solutions of nonelectrolytes appe
in the Kirkwood–Buff solution theory,28

kBTkT5uBuY (
l,m

rlrmuBulm . ~5.1!

Herel andm index species whose number densities arerl

and rm , respectively. The determinantuBu is composed of
elements

Blm5rldlm1rlrmE @glm
~2!~r !21#dr , ~5.2!

and uBulm is the cofactor of elementBlm . The component-
specific pair correlation functions have been denoted in
vious fashion byglm

(2) . Equation~5.1! clearly reduces to Eq
~1.3! in the one-component case.

Vibrational and inherent-structural contributions to t
multicomponentkT can be distinguished in analogy to th
same separation for the single-component analysis. Rep
ing theglm

(2) in Eq. ~5.2! with corresponding ‘‘quenched’’ pai
correlation functionsglmq

(2) produces determinant elemen
Blmq , and so the inherent-structural part of the soluti
compressibility has the form,

kBTkTq5uBquY (
l,m

rlrmuBqulm . ~5.3!

The vibrational contribution is the difference in values giv
by Eqs. ~5.1! and ~5.3! which, however, does not have
simple expression in terms of theDglm

(2) .
Ionic systems present a significant exception. Forma

they are mixtures, but the long-range Coulomb interacti
they possess profoundly influence density fluctuations.
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particular, ionic systems are subject to local electroneutra
conditions, and to a ‘‘second moment’’ or ‘‘perfect shield
ing’’ condition, on the pair correlation functions.29 The first
of these leads to the result

r1
211E @g11

~2! ~r !21#dr5r2
211E @g22

~2! ~r !21#dr .

~5.4!

Because the anions~2! and cations~1! are forced to fluc-
tuate together, either species can be used separately to c
latekT . Consequently,kBTkT can be expressed either as t
left or the right member of Eq.~5.5!. This reduction to
single-component format means that the analysis of the
ceding Secs. I and IV is directly applicable to the single-s
systems.

The constant-volume heat capacityCv can be viewed as
the energy fluctuation analog ofkT . In the canonical
ensemble,30

NkBT2cv5^~E2^E&!2&, ~5.5!

a relation similar to Eq.~1.1! for kT . Not surprisingly, then,
cv can also be separated into vibrational and inhere
structural contributions. This is obvious given that the Hel
holtz free energyF has the same kind of separation in i
inherent structure representation,8,9

F/NkBT5~Fq1Fn!/NkBT. ~5.6!

The inherent-structural portionFq is a linear combination of
a mean ‘‘quenched’’ potential energyfq , and a basin enu-
meration functions defined so that exp(Ns) gives their dis-
tribution versus depth,11

Fq /NkBT5fq /kBT2s~fq!,
~5.7!

fq5^Fq&/N.

The vibrational part,Fn , is just the conventional intrabasi
vibrational free energy for those inherent structures wh
potential energy per particle lies at depthfq . Consequently,
we have

cv /kB52~T/NkB!@]2~Fq1Fn!/]T2#v

[~cvq1cvn!/kB . ~5.8!

Upon passing downward in temperature through a glass t
sition, the inherent-structural contribution suffers a dynam
cal switching off, thus producing a drop incv .

Other thermodynamic quantities of interest in connect
with glass transitions are the thermal expansion coeffic
ap and the isobaric heat capacitycp . Both of these change
abruptly as the material is cooled across its gla
transition.22,31 These properties are also amenable to reso
tion into vibrational and inherent-structural contribution
However, this resolution proceeds most naturally in
constant-pressure quenching scenario that falls outside
scope of the present paper. We reserve this extension
subsequent study.

APPENDIX

Inherent structures prepared from the liquid phase
steepest-descent mapping are homogeneous, isotropic, a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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phous solids, at least when viewed at the macroscopic le
scale. Their elastic properties are specified by two consta
which can be chosen to be Young’s modulus (E) and Pois-
son’s ratio~s!. The present application requires isotherm
versions of these elastic constants,ET andsT . The isother-
mal compressibility for the isotropic amorphous medium
the combination,32

kT53~122sT!/ET . ~A1!

Finding exact vibrational normal modes and frequenc
for an amorphous solid is difficult due to local disorde
However, the Debye continuum approximation33,34 affords a
conveniently simple estimate for present purposes. In
approach all modes are treated as spatially extended s
soidal waves with either pure longitudinal or pure transve
character. Only the former type can contribute to dens
fluctuations.

A typical longitudinal mode, with wave vectork and
amplitudeA(k), possesses a displacement field

u~r !5A~k!sin~k•r !uk ,
~A2!

uk5k/uku

The corresponding density variation is

dr~r !52rkA~k!cos~k•r !, ~A3!

and the energy increment required to produce this dis
bance is35

dE~k!5
ET~12sT!Vk2A2~k!

4~11sT!~122sT!
, ~A4!

whereV is the system volume. It is necessary to impose
upper limit kmax on wave vector magnitude that is inverse
proportional to the mean nearest-neighbor spacing in
amorphous medium.

Next, calculate the spatial correlation of density fluctu
tions due to the linear superposition of independent long
dinal modes, and perform a thermal average,

^dr~0!dr~r !&5r2S8k2 cos~k•r !^A2~k!&

5
2~11sT!~122sT!kBTr2

ET~12sT!V
S8 cos~k•r !.

~A5!

Here the primed sum covers all contributing independentk’s.
Replacing thek sum by an integral is appropriate for th
large-system limit of interest, so Eq.~A5! becomes

^dr~0!dr~r !&5
~11sT!~122sT!kBTr2

8p3ET~12sT!

3E
k,kmax

cos~k•r !dk

5F ~11sT!~122sT!kmax
3 r2kBT

2p2ET~12sT!
GF~kmaxr !.

~A6!

Here the distance dependence is controlled by the funct

F~u!5~sin u2u cosu!/u3, ~A7!
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th
ts,

l

s
.

is
u-
e
y

r-

n

e

-
-

n

which is plotted in Fig. 2. Notice that it implies substanti
density enhancement at small separation, followed by a
braically damped oscillations at larger distances.

Connection with the main text of the paper, specifica
with the separated form~2.2! of the compressibility relation,
rests on the identification

r21^dr~0!dr~r !&>rDg~2!~r !. ~A8!

Therefore the estimate ofDn(R), the incremental averag
number of neighbors out to radiusR due to vibrational de-
formations, is given by

Dn~R!5rE
r ,R

Dg~2!~r !dr

>r21E
r ,R

^dr~0!dr~r !&dr

5
2~11sT!~122sT!rkBT

pET~12sT!

3@Si~kmax R!2sin~kmax R!#. ~A9!

Here Si(u) is the sine integral function; as its argument i
creases to infinity it converges top/2. However, in the same
large-distance limit the sine function in Eq.~A9! continues to
oscillate, an artifact due to the sharp cutoff assumed ink
space atkmax. A more realistic approximation would replac
the discontinuous cutoff with a continuous dropoff to ze
and would have the effect of damping out such oscillations
largeR. A more formal route to the same conclusion wou
be to introduce either a simple exponential or a Gauss
convergence factor in the integrand of Eq.~A9!. Then since

lim
a→01

E
0

`

exp~2ax!cos~mx!dx50, ~A10!

lim
a→0

E
0

`

exp~2a2x2!cos~mx!dx50 ~A11!

for mÞ0, it is clear that asR diverges to infinity the sine
function in Eq.~A9! should be replaced by its average val
zero.

FIG. 2. Spatial dependence of local density enhancement estimated
longitudinal Debye-spectrum normal modes. The functionF is defined in
Eq. ~A7!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In view of these considerations, we see that the De
approximation implies

Dn~`!5
~11sT!~122sT!rkBT

ET~12sT!
. ~A12!

If this expression is used in Eq.~4.3! to estimate the glass
phase isothermal compressibility, the result is the followin

kT
~g!5F ~11sT!

3~12sT!GF3~122sT!

ET
G . ~A13!

In view of identity ~A1! the bracketed first factor shoul
always be unity. However, it only attains this value wh
sT51/2. Deviations from unity for othersT reflect short-
comings of the simple Debye approximation. In spite of t
shortcoming, the Debye approximation has the qualita
virtue of demonstrating the connection between vibratio
normal modes and the compressibility relation.
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