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The well-known and general *“compressibility theorem” for pure substances relates
=—(d In Vlgp)y 1 to a spatial integral involving the pair correlation functigff). The isochoric
inherent structure formalism for condensed phases sepay&temito two fundamentally distinct
contributions: a generally anharmonic vibrational part, and a structural relaxation part. Only the
former determinesc; for low-temperature crystals, but both operate in the liquid phase. As a
supercooled liquid passes downward in temperature through a glass transition, the structural
contribution toxt switches off to produce the experimentally familiar drop in this quantity. The
Kirkwood—Buff solution theory forms the starting point for extension to mixtures, with
electroneutrality conditions creating simplifications in the case of ionic system4.998 American
Institute of Physicq.S0021-960808)50634-4

I. INTRODUCTION former thatg(® is obtained from the diagonal elements of

the pair density matrix.Although certain delicacies of inter-

The fuqdamental task of statistical mechanics is Fo relat‘foretation are involved, we point out below that the compress-
macroscopic observables to molecular-level properties. O”i‘E)iIity relation (1.3 also applies to the crystalline solid
of the notable connections of this sort, usually derived in the), ;g

grand canonical ensemble context, expresses the isothermal Measuredi; values for common liquids vary consider-

compre_ssilsalility xr in terms of number(or density  ghy Byt normally increase with temperature at constant
fluctuations, pressuré. Water is exceptional, withc; declining with in-
KeTrr/V={(N—(N))%/(N)2. (1.2 creasing temperature below 46 °C at atmospheric pre&sure.

K dTh hei | . b No doubt such a distinction enjoyed by water arises from its
HereN, V., kg, andT have their usual meanings as num erspeculiar intermolecular interactions and the characteristic

of molecules, system volume, Boltzmann’s constant, and ati5,e, sryctures they produce at low enough temperatures and
solute temperature; and

pressures. That situation highlights the desirability of isolat-
k1=—(IN)(IVIIp)n.T- (1.20  ing specific structural contributions te; for water, and in-

A v O . d Zernik he f h deed for all liquids regardless of whether they are conven-
_pparenty mstein and Zerni sve_re_t e first _to rec_astt € tional or unusual. This paper provides a theoretical strategy
right member of Eq(1.1) as a spatial integral involving the for effecting that separation

two-point density—density correlation function. In modern

The following Sec. Il shows that by casting the problem
terminology"* this transforms Eq(1.1) into Wing W y casiing the p

in the language of inherent structures, there emerge naturally
two contributions toxy, one structural and one “vibra-
PkBTKT=1+Pf [g®(r)—1]dr, (1.9 tional.” Section Il applies this separation to the low-
) , . temperature crystal, for which inherent structure is substan-
wherep=(N)/V is the mean number density, ag@_) isthe  fially unique, and the vibrational effects are described in
molecular pair correlation function. The integral in this lastiorms of noninteracting harmonic normal modponons.
expression covers all space, agd is to be interpreted as gaction IV considers the extension of compressibility rela-
the infinite-system limit function. The compressibility rela- 4, (1.3) to supercooled liquids and to the glasses they form
tion (1.3) is noteworthy in that it contains no explicit appear- pe|oyy 4 glass transition temperature. Finally, Sec. V offers
ance of molecular interactions. , o some discussion of related problems, and some conclusions.
Most applications that use relatidt.3) involve liquids Ay Appendix contains technical details for a simple Debye-

unzder conditions of thermal equilibrium. Deviations of gnectrym analysis of the vibrational contribution to com-
g®(r) from its asymptote unity denote short-range order Noressibility.

the arrangement of molecules comprised in the liquid, as

well as long-ranged density fluctuations if the fluid systemll. ROLE OF INHERENT STRUCTURES

exists near a critical point. The relation is equally true for  Although generalization to more complex materials pre-
guantum fluids as it is for classical fluids, provided for thesents no basic problems, for simplicity we will restrict atten-
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tion to the case of structurelegspherically symmetricpar- 0.0 . I
ticles. Let®y(ry---ry) be the potential energy function for

interaction among thé&l particles when they are located at 02 -
positionsrq---ry. By constructing a steepest-descent path o4l i
for the ®\ hypersurface, any system configuratiof--ry

(with only zero-measure exceptignscan be mapped I 0.

uniquely onto the corresponding “quenched” configuration
14" "Tng OF an inherent structuf&™ More specifically, the
constant-volume steepest descent equations

dri(s)/ds=V,;®[ri(s)---ry(s)] (1<i=<N) (2.1

for s=0, with ry---ry as initial conditions, converge to the

quenched configuration,q - :ryq as s approaches infinity.

The set of all system configurations that map to the s#xe FiG. 1. Plot of the quantity(p~?3«) defined in Eq(3.3), for the specific

minimum constitutes the basin of attraction for that mini- case of the face-centered cubic lattice.

mum. The mapping itself serves to remove intrabasin “vi-

brational” displacements that have taken the particles away o ]

from positions of mechanical equilibrium, and that may in-correspond to the absolute minimum of the potential energy

deed be quite anharmonic in some cases. function. Vibrations are the familiar phonons of solid state
We can imagine subjecting each representative configuohys_ics%9 and can be viewed accurately as independent har-

ration from the ensemble that producgd(r) to the steep- Monic normal modes of motion.

est descent mapping. The resulting collection of quenched 1he geometric structure of the perfect crystal may be

configurations offers a representative sampling of inherengharacterized by distances and coordination numbes,

structures for the initial thermodynamic state, and possessd@r the successive shells of neighbors<(1,2,...) around any

its own quenched pair correlation functig[((f)(r)_ By con- particle. Ass_ummg th_at 0(r21)ly one crystallographic pgrtlcle

struction, this process removes the influence of vibrationafyPe occurs in the latticegy™ will then have the following

deformation from the pattern of short-range order. Pasform:

1.2 L | 1 1 |

p'2/30L

experienc& " has revealed thag'?(r) tends to exhibit a »
strongly enhanced vision of short-range order in comparison  g{?(r)=(4mp)~*> Z,r,?8(r—r,), (3.1
with g‘@(r). v=1
Equation(1.3) trivially transforms into the following: in other words a suitably weighted radial Dirac delta function
for each coordination shell. The presence of such singular
pkBTKT=1+pf [gff)(r)—l]dr+pf Ag@(r)dr, terms in Eq.(3.1) nominally seems problematic for conver-

(2.2 gence of the integrals in Eq2.2) that containg{® . How-
ever, we can properly assure convergence by reinterpreting

where Eq. (2.2) in the following manner:
Ag?(r)=g'?(r)—gg(r) (23 .
kgTkr=1+p lim J expl—ar r)—1]dr
represents the effect of purely vibrational “smoothing” of pre T p w0+ A—arlgg (n—1]
short-range molecular order, and for fluids at least is likely to
diminish to near zero beyond third or fourth neighbor shells. 4o i J —ar)Ag@(r)d 3.2
The first term, unity, in the right member, is a pure kinetic P aﬂ; eXp—arf)AgT(ndr. (3.2

contribution toxt; the following integral captures the en-

tirety of the structural component; and the last, integral term 1 N€ firstintegral in the right member of the last equation
provides the vibrational part o . can readily be evaluated numerically, as a function of con-

vergence parameter, for any simple lattice. Using expres-

IIl. CRYSTAL COMPRESSIBILITY sion (3.1), this integral reduces as follows:

Although the compressibility relatior(1.1) or (1.2), is |(p*2’3a)EpJ exp(— ar?)[gy(r)—1]dr
usually invoked in connection with fluid state studies, it is
valid for all equilibrium phases. In particular it describes the
crystal phaséor phasepthat obtains for any pure substance =2 Z, exp(—ar?) —p(mla)® (3.3
(exclusive of He at low pressurat sufficiently low tempera- .
ture. For crystalsi+ is but one of several isothermal elastic Figure 1 displays for the face-centered cubic lattice, show-
constants, the number of which depends on the symmetry dfig how this quantity converges rapidly tol asa>0 de-
the crystalline phas€3 for cubic symmetry, up to 18 for clines toward 0. The same behavior has been observed for
triclinic symmetry®). other lattices with other symmetries, and merely illustrates

If absolute temperatur€is sufficiently low, the inherent the “missing particle phenomenon.” The functi(gf) in-
structure of the crystal will be substantially uniq(garticle  cludes a contribution from every particle in the periodic lat-
permutations are irrelevant in the present conteatid will  tice except for the one at the origin; consequently,
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lim 1(p~%Ra)=-1. (3.9

a—0+

Owing to the last result, Eq3.4), we expect cancellation of
the first two terms in the right member of E®.2), whenT
is sufficiently low that the perfect crystal obtains. Equilib-
rium concentrations of point defectspecifically vacancies
and interstitials appear in crystals, but even just below the
melting point their concentrations are typically very low on a
per-lattice-site basi®. Furthermore, point defects have a
positive creation energy, so their concentrations should be
dominated by Boltzmann factors exp{/kgT), vanishing
more strongly asT—0 than any positive power of. The
consequence of these considerations is that in the lo
temperature limit, the isothermal compressibility of the crys-
tal must emerge strictly from the vibrational contribution in-
tegral in Eq.(3.2),
k= lim (kBT)*lf exp(—ar?)Ag@(r)dr. (3.5
a—0+
It is easy to see that the integral in E§.5 must be propor-
tional to kgT, thereby cancelling the inverse of this factor
which multiplies it, and leaving a finite for the crystal in
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function ofr, just as is its precurs@‘?)(r). In particular this
means that botly{” and g‘®(r) smoothly approach unity
with increasingr, so that the convergence-assuring limit op-
eration invoked earlier in Eq3.2) is no longer necessary.
Hence we can revert to ER.2) for separation of vibrational
and inherent structural contributions to isothermal compress-
ibility in liquids.

Under conventional circumstances, metastable super-
cooled liquids have finitébut often very long lifetimes be-
fore they succumb to phase-changing nucleation events. This
permits experiment to characterize supercooled liquids by a
substantial variety of reproducible measureméhtdhe

V\;_heory for the quasiequilibrium states of liquid supercooling

is considerably simplified by introducing constraints that
force the many-particle system to remain permanently in that
portion of the multidimensional configuration space that cor-
responds to non-nucleated(crystallite-fre¢ inherent
structures!! Application of these mathematical constraints
converts the quasiequilibrium status to true equilibrium sta-
tus, while causing virtually no effect on reproducibly mea-
surable properties of the liquid. We shall assume that such
constraints are present for the remainder of this section.
The virial equation of state for the pressure is affected by

the low-temperature limit. The integral measures the locathe presence of constraints. Specifically, constraints designed
accumulatior(or reduction in matter about a central particle to stabilize supercooled liquids generate an extra term in the
due to the action of independent normal modes. Consesquation of state beyond those conventionally occudirig.
quently, we must be able to writtcompare results in the «; were to be obtained via this route, performing the neces-
Appendix), sary partial derivative required by its definition E.2), the
constraint would continue to make an explicit appearance in
the result. Equation$l.3) and (2.2), however, stand in re-
freshing contrast; provided the correct pair correlation func-

where u indexes the normal modes, whose amplitudes ardion for the constrained ensemble is used, no such explicit
given by thea,, respectively. The weight€,(a) depend constraint contributions are ne_eded to _evalua,te

on the mode wave vectors and polarizations, and in particu- The fundamental diversity of inherent structures

lar will vanish for pure transverse waves. EquatiBré) rec- guenched f.rom .the liquid phase.carnes w_|th it a correspond-
ognizes that the local density fluctuation effect sought must"d fluctuation in number density. Put simply, amorphous

depend on amplitude squared. The thermal averages ifAackings incorporate distinct regions that deviate substan-
volved have the form tially above as well as below the overall number density,

5 5 owing to the vast number of ways that mechanically stable
2\ J&, exa—K,a,/2kgT)da, arrangements of particles can be achie¥=d This contrasts
“ [ exp(—K,al/2kgT)da,

f exp(—ar?)Ag?(r)dr=2, C,(a)(a2), (3.6)
y

(a (3.7

whereK , is a restoring-force constant for moge Substi-
tuting from Egs.(3.7) and (3.6), one sees that the factor
(kgT) tis cancelled in Eq(3.5) to leave the formal expres-
sion for low-temperature crystal compressibility,

=KgT/K,, with the single, uniform density, inherent structure character-

izing the low-temperature crystal described in the preceding
section. As a result of this density fluctuation we now expect
to find

1+pf [9(r)—1]dr>0 4.1

o % Cul 0K, 3.8 for the liquid, as opposed to O for the perfect crystal implied

by Eg. (3.9).

As the temperature of a supercooled liquid declines
through its glass transition dt;, the isothermal compress-

In contrast to the perfect crystal case examined in thebility suddenly drops. The change can involve a factor of 2
preceding Sec. lll, application of steepest-descent quenchingr more?® The generally accepted explanation of the glass
to the liquid phase generates a diverse collection of amortransition and associated phenomena is that the many-

IV. SUPERCOOLED LIQUIDS AND GLASSES

phous inherent structuréd;*>?'This is true whether the lig-
uid is in a strict equilibrium statdi.e., above its melting
temperatureT ), or is supercooledT<T,,). The irregular-
ity of the inherent structures as well as their diversity cause
the corresponding{”(r) to be smooth and continuous as a

Downloaded 22 Aug 2001 to 128.112.35.162. Redistribution subject to A

particle system becomes kinetically trapped in a small por-
tion of the available configuration spateln the present
inherent structure representation, this means thaflthd,
guasiergodic sampling of the amorphous, constrained, region
of configuration space ceases beldy. At most, the low-
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temperature glass can explore only a tiny subset of alparticular, ionic systems are subject to local electroneutrality
steepest-descent basins. In particular, this subset would ®nditions, and to a “second moment” or “perfect shield-
connected across low potential energy barriers that are assimg” condition, on the pair correlation functiods.The first
ciated with the localized switching of small groups of par- of these leads to the result

ticles, the so-called two-level systeffs’

The capacity of the many-particle system to experience p;1+J [gfl(r)—l]dr:pjuj [g@ (r)—1]dr.
structure-related density fluctuations thus is “frozen out” for (5.4
T<Ty. This leaves only the vibrational contribution ig ’
operative in the glass state, analogous to the situation foun@ecause the anions-) and cations+) are forced to fluc-
in the preceding section for the low-temperature crygtal tuate together, either species can be used separately to calcu-
Eg. (3.5]. Consequently, the sudden dropsin at T, can be late k1. Consequentlykg T« can be expressed either as the

identified, left or the right member of Eq(5.5. This reduction to
single-component format means that the analysis of the pre-
Akr=r{)— K(Tg)=(kBTg)l[ 1+ J [gﬁf)(r)—l]dr]. ceding Secs. | and 1V is directly applicable to the single-salt
systems.
(4.2) The constant-volume heat capacly can be viewed as
Therefore, in the glass we have the energy fluctuation analog ok;. In the canonical
ensemble?
K<Tg>=(kBT)—1f AgP(rydr  (T<Ty). (4.3 NksT2c, = ((E—(E))?), 5.5

An Appendix supplies a simple Debye-spectrum estimate fog relation similar to Eq(1.1) for 1. Not surprisingly, then,
this remaining contribution, the vibrational compressibility. ¢, can also be separated into vibrational and inherent-
structural contributions. This is obvious given that the Helm-
holtz free energyF has the same kind of separation in its
inherent structure representatfon,

The_ _ana_\lysis presented above concerns isothe_rmal com- FINKgT=(Fo+F,)/NksT. (5.6)
pressibility in a single-component system, for which basic
relation (1.3) is appropriate. The generalization of that rela- The inherent-structural portioR, is a linear combination of
tion to multicomponent solutions of nonelectrolytes appear@ mean “quenched” potential energf,, and a basin enu-

V. CONCLUDING REMARKS

in the Kirkwood—Buff solution theory® meration functiono- defined so that explo) gives their dis-
tribution versus deptht
kBTKT:|B|/ % PAPulBlry - (5.0 Fo/NKeT=gbo/ksT— (g, 67
Here N and i index species whose number densities @re bq=(Pg)/N.
andp,, respectively. The determinatB| is composed of The vibrational partF,, is just the conventional intrabasin
elements vibrational free energy for those inherent structures whose
potential energy per particle lies at depth. Consequently,
B)\M=p)\5)\u+p)\pﬂf [9\2)(r)—1]dr, (5.2 we have

and|B|, , is the cofactor of elemerB, ,. The component- C, /kg=—(T/Nkg)[ #*(Fq+F,)/dT?],
specific pair correlation functions have been denoted in ob- =(CyqtCy) kg (5.8
vious fashion byg{). Equation(5.1) clearly reduces to Eq.
(1.3) in the one-component case.

Vibrational and inherent-structural contributions to the o . ,
multicomponentx; can be distinguished in analogy to the cal switching off, thus producing a drop @} .

same separation for the single-component analysis. Replac- Other thermodynamic quantities of interest in connection
ing theg§\2) in Eq. (5.2) with corresponding “quenched” pair with glass transitions are the thermal expansion coefficient
. .(5.

correlation functionsg(?), produces determinant elements P and the isobaric heat capacity. Both of these change
Ihud . abruptly as the material is cooled across its glass
Bruq: @nd so the inherent-structural part of the solution ) o531 .
~ I transition?“>* These properties are also amenable to resolu-
compressibility has the form, T . . . g
tion into vibrational and inherent-structural contributions.
T —IB 2 B 53 However, this resolution proceeds most naturally in a
8T Kk1=|By| “ PrPulBali (53 constant-pressure quenching scenario that falls outside the
scope of the present paper. We reserve this extension for
subsequent study.

Upon passing downward in temperature through a glass tran-
sition, the inherent-structural contribution suffers a dynami-

The vibrational contribution is the difference in values given
by Egs. (5.1 and (5.3 which, howczaver, does not have a
simple expression in terms of thbg(Mz ' APPENDIX

lonic systems present a significant exception. Formally
they are mixtures, but the long-range Coulomb interactions Inherent structures prepared from the liquid phase by
they possess profoundly influence density fluctuations. Irsteepest-descent mapping are homogeneous, isotropic, amor-
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phous solids, at least when viewed at the macroscopic length 0.5 T 1
scale. Their elastic properties are specified by two constants,
which can be chosen to be Young’s modul&s @nd Pois-

son’s ratio(o). The present application requires isothermal
versions of these elastic constarits, and or. The isother-

mal compressibility for the isotropic amorphous medium is F
the combinatior?

KT:3(1_2(TT)/ET. (Al)

Finding exact vibrational normal modes and frequencies 0.1 F =
for an amorphous solid is difficult due to local disorder. o 2 4 6 8 10 12 12 16 1
However, the Debye continuum approximatiorf affords a "
conveniently simple estimate for present purposes. In thisIG > Soatial deoend  local density enh + esimated with
: H 1G. 2. patial depenaence or local aensity enhancement estimated wi
ap.proach all m.Ode?’ are treated gs Sfpa“a”y extended Sln'“:é)ngitudinal Debye-spectrum normal modes. The functors defined in
soidal waves with either pure longitudinal or pure transverse (a7).
character. Only the former type can contribute to density
fluctuations.
A typical longitudinal mode, with wave vectdr and o o . o _
amp“tudeA(k)’ possesses a disp'acement field Wh|Ch IS plotted n Flg 2. Notice that ”.: Imp|IeS SubStantIa|
) density enhancement at small separation, followed by alge-
u(r)=A(k)sin(k-ryuy,

(A2) braically damped oscillations at larger distances.

u=k/|K| Connection with the main text of the paper, specifically
) _ o with the separated forr2.2) of the compressibility relation,

The corresponding density variation is rests on the identification

op(r) == pkAkjcosk-r), B3 p Y ap(0)ap(r))=pAg2(r). (A8)
Eggctehcia§5energy increment required to produce this dIStur'_I'herefore the estimate dfn(R), the incremental average

number of neighbors out to radil due to vibrational de-
E+(1—o7)VK2AZ(k formations, is given b
SE(K) = 7( T) (k) (Ad) g y

4(1+o1)(1-207)

whereV is the system volume. It is necessary to impose an An(R)zprRAg(Z)(r)dr
upper limit k.., 0N wave vector magnitude that is inversely
proportional to the mean nearest-neighbor spacing in the
amorphous medium.

Next, calculate the spatial correlation of density fluctua-

E/flfKR(fSp(O)5/3(If)>0|lf

tions due to the linear superposition of independent longitu- _ 2(1+o07)(1—207)pksT
dinal modes, and perform a thermal average, 7mE+(1-0o7)
(8p(0)3p(r))=p?3'k? cogk-r)(A%(K)) X[ Si(Kmax R) = Sin(Kynax R) 1. (A9)
2(1+ o1)(1—201)kgTp? ) Here Si{) is the sine integral function; as its argument in-
= Ex(1—oq)V 2" cogk-r). creases to infinity it converges te/’2. However, in the same
(AB) large-distance limit the sine function in E@\9) continues to

oscillate, an artifact due to the sharp cutoff assumed in
Here the primed sum covers all contributing indepen#té&nt  space ak,,,,. A more realistic approximation would replace
Replacing thek sum by an integral is appropriate for the the discontinuous cutoff with a continuous dropoff to zero,
large-system limit of interest, so EA5) becomes and would have the effect of damping out such oscillations at
largeR. A more formal route to the same conclusion would
+ - 2 ) ) ) : :
t+or)(1-207)ksTp be to introduce either a simple exponential or a Gaussian

<5p(0)5p(r)>=(

8m°Er(1-o7) convergence factor in the integrand of E49). Then since
ka<k cogk-r)dk lim f exp(—ax)cogmx)dx=0, (A10)
max a—0+ YO
(14 07)(1—2071)k3 ,02keT .
= 27%E1(1—or) F(Kmat ). lim f expl — a2x?)cog mx)dx=0 (A11)
(A6) ’

for m#0, it is clear that aRR diverges to infinity the sine
function in Eq.(A9) should be replaced by its average value
F(u)=(sinu—u cosu)/u?, (A7)  zero.

Here the distance dependence is controlled by the function
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(1+07)(1-207)pkgT
Er(1—-o7)

If this expression is used in E¢.3) to estimate the glass-

An(ew)= (A12)

phase isothermal compressibility, the result is the following:eg

(1+ov7)
3(1-o7)

3(1-207)
Er

L9 =

. (A13)
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