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To date, the calculation of shear viscosity for soft-core fluids via equilibrium molecular dynamics
has been done almost exclusively using the Green-Kubo formalism. The alternative mean-squared
displacement approach has not been used, except for hard-sphere fluids, in which case the expres-
sion proposed by Helfand [Phys. Rev. 119, 1 (1960)] has invariably been selected. ‘When written in
the form given by McQuarrie [Statistical Mechanics (Harper & Row, New York, 1976), Chap. 21],
however, the mean-squared displacement approach offers significant computational advantages over

both its Green-Kubo and Helfand counterparts.

In order to achieve comparable statistical

significance, the number of experiments needed when using the Green-Kubo or Helfand formalisms
is more than an order of magnitude higher than for the McQuarrie expression. For pairwise-
additive systems with zero linear momentum, the McQuarrie method yields frame-independent
shear viscosities. The hitherto unexplored McQuarrie implementation of the mean-squared dis-
placement approach to shear-viscosity calculation thus appears superior to alternative methods

currently in use.

I. INTRODUCTION

Twenty years after the first report on shear viscosity
calculation via molecular dynamics,! important questions
remain regarding the evaluation of this property for soft-
core potential fluids.2 These include the effects of poten-
tial truncation and shifting,>3 anomalies in the sample-
size (N) dependence,>*> and the effect of the long-time
tail on the cross and potential contributions to the stress
autocorrelation function.?®’ These questions are also
important in the case of viscosity calculations via non-
equilibrium molecular dynamics,>® since agreement be-
tween equilibrium and nonequilibrium results is often
used as a consistency test.>%°

Alder, Gass, and Wainwright’s hard-sphere,! as well as
Michels and Trappeniers’s square-well calculations'® em-
ployed a mean-squared-displacement approach for the
calculation of shear viscosity. This choice was motivated
by the fact that the evaluation of stress autocorrelations
is not straightforward for hard spheres, which experience
8-function forces upon collision.! Most viscosity calcula-
tions for soft-core fluids via equilibrium molecular dy-
namics have employed the Green-Kubo (GK) approach
(see, for example, Refs. 3-5, 8, and 9). Although the
theoretical equivalence between the mean-squared-
displacement and GK formalisms in the thermodynamic
limit is well known,!! 713 their relative computational and
numerical merits have not been explored to date. This is
surprising, especially in light of the significant computa-
tional advantages which one of the possible implementa-
tions of the mean-squared-displacement formalism
possesses, as will be shown in this paper.

The mean-squared-displacement equation for shear
viscosity can be written in at least two forms: one given
by Helfand,'? and the other by McQuarrie.!! The latter

a8

form has never, to the best of our knowledge, been used
in simulation work. Furthermore, the theoretical
equivalence between the Helfand and McQuarrie expres-
sions has not been discussed to date. In this paper, we
first address this theoretical equivalence, and derive the
constraints under which it applies. Subsequently, we dis-
cuss the implementation of the McQuarrie formalism for
viscosity calculations in periodic systems, and derive the
conditions which must be satisfied in order for the
method to yield results which are invariant under coordi-
nate translation.

Finally, we investigate the relative merits of the GK
and mean-squared-displacement formalisms (the latter in
both its Helfand and McQuarrie implementations) by
performing viscosity calculations in the course of NVE
and NVT equilibrium-molecular-dynamics simulations of
a Lennard-Jones fluid.

II. THEORETICAL EQUIVALENCE
BETWEEN DIFFERENT DISPLACEMENT
EQUATIONS

The mean-squared-displacement expression for the
shear viscosity can be written in (at least) three different
ways. The equations are equivalent in the thermodynam-
ic limit, but have quite different numerical implications.
To see this, we first write

=_1 i< S b (Dpa ()2, (1) —2,(0)
n 2kTV | dr > P Dxj Z; zj > ’

Lj=1 large ¢
(2.1)
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where the time derivative is to be taken at long times,
pyi(8) and z;(¢) denote the x component of the linear
momentum and the z component of the position vector of
particle i at time ¢, and the angle brackets indicate canon-
ical ensemble averaging,!? including the six possible af
permutations (@¥B=x,y,z). Equation (2.1) (with t!re-
placing d /dt) is Eq. (3.13) in Ref. 12 and Eq. (21.304) in
Ref. 11. Starting from this relationship, Helfand!? ar-
rived at Eq. (2.3) and McQuarrie'! to Eq. (2.2). We do
not rederive Eq. (2.1) here: the interested reader can con-
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where we have used conservation of linear momentum.'?

The assumption of constant linear momentum in a canon-
ical system needs to be carefully considered. A canonical
ensemble is composed of closed systems bounded by rigid
diathermal walls. The linear momentum of the walls can
be strictly imposed, for example, by requiring that they
be at rest, in which case it is zero. However, the parti-
cles’ total linear momentum is not strictly conserved.
According to Helfand,!? “Since total momentum is not
strictly conserved due to wall interactions we have as-
sumed above that the correlation of the deviations with
the other factors are either small or short lived.” This
approximation introduces an error of order 8 /L, where &
is the effective range of intermolecular interactions (< 10
A), and L is the characteristic length of the container. It
underlies all of Helfand’s original derivations as well as
the present treatment. Although isothermality and con-
servation of linear momentum can both be rigorously im-
posed in simulations (Sec. III), this should not obscure
the fact that the theoretical viscosity expressions assume
the simultaneous validity of these two conditions, a situa-
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sult the above references.'l'!? Rather, we focus here on
the theoretical and computational relationship between
these expressions.

Expanding the argument in Eq. (2.1) we obtain

<2 Pa 07Oz (1) —2,(0) )
iLj=1
N N
~( 2 2uttpy@220) +( 3 ptop, 0127(0)
Q=1 ij=1
<2 Pa(1)py;(0)z,(2 )zj(o>>. (2.4)
Lj=1

The first term on the right-hand side can be
transformed as follows:!?

I
tion which is not strictly possible in real systems.

The second term on the right-hand side of Eq. (2.4),
similarly, becomes

N
(3 putipy©2)
=1

N N
= <21 P;?i(())z2(0)> + <#2 lpxi(O)ij(O)ij(O)> (2.6)
i= i#j=

and, for the third quantity in Eq. (2.4), we write

<lj=1

S pultpy(0)z,(0)z <o>>

<2 Pxi ()P, (0)z,( t)z<0)>

+< 2 Pxf(’)ij(O)z,-(t)zj(O)> . 2.7)
itj=1
The argument in Eq. (2.1) therefore reads
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Expanding the argument in Eq. (2.2) we obtain, without any transformation,

<2 [Pt

and, invoking conservation of linear momentum,!?
pression [i.e., Eq. (2.3)],

<
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as was done in Eq. (2.5), we obtain, for the argument in Heiand’s ex-
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The equivalence of the Helfand and McQuarrie expressions [Egs. (2.3) and (2.2), respectively] means that their time-

dependent contributions grow at the same rate with respect to time in the long-time limit.
(2.10), and noting that { I ,p2(1)z7(2)) and ( SN _; p(t)p,;()z,(¢)

ensemble, we can write

L
KTV

d

Ny =NMMQ ™ dr

i#j=1

where the subscripts denote the Helfand and McQuarrie
expressions. It follows that the equivalence of Helfand
and McQuarrie expressions depends on the following
condition:

=0. (2.12)

large ¢

N
< > [pxi(t)pxj(O)z,-(t)zj(O)]>

i#j=1

dt

Equation (2.12) is a plausible conjecture. Although we
will show in Sec. IV that this conjecture is fully support-
ed by simulation results, we are not aware of a theoretical
proof of its validity.

The presence of an additional term in the Helfand ex-
pression introduces fluctuations, whose numerical impli-
cations will be discussed in Sec. IV. Its absence from the
McQuarrie formula represents a very important
simplification, insofar as it reduces the computation of
the shear viscosity to a one-particle problem,

large ¢

d
dt <[pxi(t)zt(t
(2.13)

At present, however, the validity of Eq. (2.13) rests on
plausibility arguments [i.e., Eq. (2.12)]. Though con-
sistent with numerical (simulation) tests, the validity of
such arguments is yet to be established theoretically.

__N
T~ 2kTV

)—px,-(O)z,-(O)]2>

III. NUMERICAL COMPUTATION
OF DISPLACEMENT FORMULAS
IN PERIODIC SYSTEMS

We now discuss the suitability of mean-squared-
displacement formulas for the numerical computation of

< 2 [Pxi(t)pxj(O)z,-(t)zj(O)]>

] large ¢

Comparing Egs. (2.9) and
t)) are constant in a stationary (equilibrium)

, (2.11)

viscosity in periodic systems. Specifically, we focus our
attention on the McQuarrie form. As pointed out by Al-
len and Tildesley,'* the direct computation of the dis-
placement of a quantity is always, in principle, more con-
venient than its indirect evaluation via time integration of
the corresponding autocorrelation function, i.e.,

. d . 2y o tyL oo
lim 0.5 ([@()—=@(0) ) = lim f0<¢7(s)qv(0))ds.

(3.1)

The correct computer implementation of the left-hand
side (lhs) of Eq. (3.1) for periodic systems is clearly
straightforward for ¢(¢)=r(t), where r denotes the posi-
tion of a particle. In this case, care must be taken to use
the continuous function of time unaffected by periodic
boundary conditions, commonly referred to as ‘‘unfold-
ed” positions,15 i.e., the integral of the velocity. Note in
particular that when @(#)=r(#), the lhs of Eq. (3.1) is in-
variant under coordinate translation. In the case of shear
viscosity, the calculation of the lhs of Eq. (3.1) is not, in
principle, as straightforward. Indeed, for viscosity, ¢(?)
is a sum of terms having the form r,p, (1) (or any permu-
tation thereof), and the lhs of Eq. (3.1) becomes frame
dependent, since it contains products of absolute posi-
tions and velocities. This was initially pointed out by
Hoheisel and Vogelsang® as well as by Schoen,!® who pro-
posed an integral form of the lhs of Eq. (3.1) (i.e., a non-
GK integral form) precisely to avoid a supposed depen-
dence of the computed viscosity on the choice of refer-
ence frame. Specifically, these authors wrote
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lim —<[<p(t

Jlim — ]2>——tll>n<}o d—< [f @(s) ds} > .

(3.2)

Note that ¢(s) is simply a sum over all particles of
terms of the form p,p,./m+z,F,; (or any of the six
equivalent permutations thereof). For pairwise-additive
forces, this becomes p,;p,;/m+3 ;.;(z;—z;)F,;, where
F,;; is the x component of the force on i due to j. There-
fore the integrand of Eq. (3.2) is frame independent.

We now show that the long-time limit of the time
derivative of the shear viscosity generalized displace-
ment, i.e.,

5)
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is invariant upon coordinate translation for a pairwise ad-
ditive system with 3,;p,, =0 (@=x,y,z). To this end, we
consider the McQuarrie form and write

llarge t

t [a
(3.4)

kTV | dt
Taking into account that the summation contains no
i j-terms, it can be written as
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where §;; is Kronecker’s delta. Carrying out the differentiation, to which only time-dependent terms contribute, we
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Consider now a translation of the origin such that
ro—rqtA,, (@=x,y,z). Then
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where the last term in Eq. (3.8) is zero for a system in
which 3 .p,,=0 (¢=x,y,2), and we have used the fact
that J;’B(t)(a,[a’=x,y,z) is frame invariant for pairwise-
additive systems. Then, as long as zero total linear
momentum is imposed at the outset (system at rest), and
the thermostating procedure conserves momentum (see
below), the rate of increase (but not the actual value) of
the displacement-explicit expression for a pairwise-
additive system is independent of the choice of coordi-
nates in the long-time limit. Literature statements re-
garding the unsuitability of mean-squared-displacement
expressions for viscosity calculations in periodic systems’
are therefore incorrect. This assertion will be substan-
tiated below through simulation results.

2 Px;(0)z;(0) |8

> }large t

(3.6)

The proper implementation of the viscosity generalized
displacement in periodic systems will now be discussed.
According to Eq. (3.2), the displacement can be written
either as such, or in integral form. For the latter, the
relevant quantity is

zf

i=1

N x'.py,-(t)

= igl f"ipyf‘m dxibyi) >

szpyz +x F (3.9)

where the integrand on the lhs of (3.9) is simply an off-

diagonal element of the pressure tensor. Then the in-
tegral can be easily calculated numerically
pxlpyl x

z f +x;F,; |dt=h s sz ,  (3.10)

i=1 I=1i=1
with 4, the integration time step, n =t /h, and

__ PxiPyi
J;iy_’m——i_xiFyi . (3-11)

Just as with the calculation of the virial, the positions in-
cluded in J;} are those of the molecules located in the
bounded region of space where the simulation takes place
and not those of their periodic replicas.!’

Alternatively, if the displacement is not transformed
into an integral, one simply writes

(@) x;(2, 4+1)pyi (2, +1)—x;(0)p,;(0)

ES(tn+l)=8(tn )Wxt(tn )pyi(tn)+xi(tn+1)pyi(tn+1) ’
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(b) apply periodic boundary conditions,

(e) x;(2,)pyi(t, ) =x;(t, 4 )Py (L, 1) 5

where (a) and (c) are not equations but machine instruc-
tions.

Finally, we discuss the generation of canonical ensem-
ble averages subject to the zero total linear momentum
constraint. This can be easily achieved by using the
momentum scaling method!® to keep the system’s tem-
perature constant, provided velocities are initially as-
signed such that the total linear momentum is zero. In
that case, one has

pxi(tn-H) pxz [[ZP: t )}/3meT}‘/2 (3.12)

and

S pulty )= Hzp, ]/3meT]1/22pxi(tn),

(3.13)

so that if 3,p;(t,)
(3.12) and (3.13), p?

vanishes, so will 3;p;(¢
=pitpyi tpi-

n+1)' In Eqs

IV. NUMERICAL RESULTS:
TEST RUNS AND DISCUSSION

NVT simulations of truncated Lennard-Jones (LJ)
spheres were used to compare the relative numerical and
computational merits of the different mean-squared-
displacement forms of the shear viscosity equations, i.e.,
Eqgs. (2.2) and (2.3), and of their GK counterpart. For
this purpose we chose the supercritical condition 7=2.75
and p=0.7 (in o,e units), already used by Holian and
Evans for a modified LJ potential.®> Additional simula-
tions were also performed at T=1.75, p=0.7.

The ensemble averages indicated in Egs. (2.2) and (2.3)
were performed over initial times and over the six possi-
ble permutations of r,pg., (with a,B=x,y,z). The
averaging over time origins was done by partitioning the
total run into five to ten independent subruns, each con-
taining 102—2 X 10> origins, separated by a time gap of 20
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time steps, i.e., about 6(500—20000) elements in the en-
semble [6 components times (5-10 subruns) times time
origins]. The statistical uncertainties quoted below were
obtained by calculating the spread among subrun viscosi-
ties. The mean viscosity was calculated from the slope of
the mean-squared-displacement line. The GK integrands
were evaluated using the same number of uncorrelated
experiments that were used with the Helfand formula,
and the corresponding integrals were evaluated with a
cutoff of ~500-800 time steps, beyond which they
showed no sensitivity to the time cutoff.

We analyzed the numerical equivalence between the
mean-squared-displacement and GK expressions via NVT
and NVE molecular-dynamics simulation for a system
size N=108, using two different potential cutoffs. To
avoid possible sources of ambiguity, all simulations were
started from an initial fcc configuration, while initial ve-
locity components were randomly assigned from a uni-
form distribution corresponding to the desired tempera-
ture. Equilibration lasted about 2000 time steps (time
step size, 0.003 in units of o/V'e/m). Details about the
algorithm have been discussed elsewhere. 1920 The result-
ing shear viscosity values are presented in Table I.

Note that all simulations have been performed with the
same system size (N=108) to eliminate any possible size-
dependent effects on the calculated shear viscosity values.
Although the internal consistency of our results is evi-
dent from Table I, the shear viscosities calculated in this
work (~2.1) differ appreciably from those obtained by
Holian and Evans® at the same conditions (~ 1.4). These
authors used a different potential (cubic-spline-modified
LJ). Little is known at present about the effects of trun-
cation and shifting upon simulated time-dependent prop-
erties.?! Our results suggest that these effects can be
significant.

The comparison of runs 3 and 4 shows that the magni-
tude of the fluctuations in the calculated viscosities for
the various subruns about the mean (i.e., the statistical
uncertainty) is more than an order of magnitude higher
for the Helfand than for the McQuarrie method. The
comparison of runs 1, 2, and 4 shows that, in order to
achieve comparable accuracy, the number of required

TABLE I. Shear-viscosity results for Lennard-Jones spheres. All simulations are NVT (N=108), at

T=2.75, p=0.7, except where otherwise noted.

Run No. of expts.? Cutoff (o) Method 7 (Vme/o?)P
1 (2000)(5)(6) 2.38 Green-Kubo 2.0340.18
2 (100)(5)(6) 2.38 McQuarrie 2.1840.10
3 (2000)(10)(6) 2.38 McQuarrie 2.1440.06
4 (2000)(10)(6) 2.38 Helfand 2.27+0.7
5 (100)(5)(6) 1.488 McQuarrie 2.2340.11
6° (100)(5)(6) 2.38 McQuarrie 2.12+0.07
7¢ (100)(5)(6) 2.38 McQuarrie 1.73+0.08
8¢ (2000)(5)(6) 2.38 Green-Kubo 1.82+0.20

*(Time origins) times (subruns) times (components).

cases.

The gap is 20 time steps between origins in all

®Standard deviation of subruns about the mean. Viscosity in the units shown in parentheses.

°*NVE simulation with (T ) =2.857.
INVT simulation; T=1.75, p=0.7.
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FIG. 1. Evolution of the viscosity generalized displacement
for Helfand’s expression [Eq. (2.3)]. N=108 Lennard-Jones
spheres, p=0.7, T=2.75. Experiments per subrun=12000;
gap=20A. For the sake of convenience in the numerical in-
tegration of the equations of motion, we use p times A as the
momentum, where p is given in the usual m,¢,0 units. Time is
in units of o /V'e/m.

(time origins times subruns) is more than an order of
magnitude higher for the GK and Helfand expressions
than for the McQuarrie formula. Neither the cutoff (runs
2,5) nor the choice of ensemble (runs 2,6) have statistical-
ly significant effects on the computed shear viscosity.
Even after a 20-fold reduction in the number of time ori-
gins, the statistical uncertainties associated with the
McQuarrie formula are smaller than those resulting from
a Green-Kubo calculation (runs 7,8:1,2).

The superiority of the McQuarrie formula is not unex-
pected in light of Eq. (2.11) and the ensuing discussion.
In fact, we found that despite the observation that each
of the independent subruns produced a well-defined
long-time slope (correlation coefficient ~0.99) the stan-
dard deviation about this mean was always significantly
higher for the Helfand than for the McQuarrie calcula-
tions. This is illustrated in Figs. 1 and 2. Note in partic-
ular that the number of experiments per sub-runs is
12000 in Fig. 1 and 600 in Fig. 2.

Finally, Fig. 3 shows the evolution of the argument of
Eq. (2.12) in the course of a typical simulation (N=108,
p=0.7, T=275, 5 subruns, 1200 experiments per
subrun). Similar behavior was observed for other condi-
tions and system sizes. The conjecture [i.e., the validity
of Eq. (2.12) and hence of McQuarrie’s formula] is thus
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FIG. 2. Evolution of the viscosity generalized displacement
for McQuarrie’s expression [Eq. (2.2)]. Counterpart of Fig. 1,
but with 600 experiments per subrun. Subruns 2, 3, and 4 fall
entirely between 1 and 5.

supported by simulation results. Note, however, that al-
though the argument of Eq. (2.12) does not grow with
time, its fluctuations are significant (at least for the sys-
tem sizes investigated here). This is consistent with the
different behavior shown in Figs. 1 and 2 for the argu-
ments of the Helfand and McQuarrie expressions.

1.0

)

-1.0 |

> xit)pyilt) x;(0)py;(0)

i%

<

T v T T T T

0.0 1.0 2.0 3.0 4.0

TIME

FIG. 3. Evolution of the argument of expression (2.12) (con-
jecture) for the same system and conditions of Fig. 2, after five
subruns of 1200 experiments each.
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V. CONCLUSIONS

The McQuarrie form of the mean-squared-
displacement expression for the calculation of shear
viscosity offers significant computational advantages with
respect to both the Helfand form and the Green-Kubo
method within the context of equilibrium molecular dy-
namics. The validity of the McQuarrie expression hinges
upon a conjecture which is supported by simulation re-
sults but has not yet been proved rigorously. The Hel-
fand expression contains a term, not present in the
McQuarrie equation, which, although it does not (accord-
ing to the conjecture) contribute to the viscosity in the
long-time limit, gives rise to significant noise.

The McQuarrie form represents a considerable
simplification with respect to its Helfand counterpart in
that it reduces the calculation of shear viscosity to a

4295

single-particle diffusionlike problem. In molecular-
dynamics calculations with periodic systems, it leads to
frame-independent results provided the linear momentum
is zero, and the forces are pairwise additive.
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