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SPECIAL FEATURE: INTRODUCTION

Machine learning in chemistry
Pablo G. Debenedettia,1 , Juan J. de Pablob,c, and George C. Schatzd

 Machine learning (ML), a subfield of artificial intelligence (AI), 
involves the development of algorithms that enable com-
puter systems to learn from data and perform specific tasks 
or make predictions without being explicitly programmed for 
such tasks. ML has a broad range of applications in chemistry, 
including protein design ( 1 ), drug and materials discovery ( 2 ), 
property prediction ( 3 ), acceleration of quantum-accurate 
simulations ( 4 ), computational catalysis and reaction engi-
neering ( 5 ), design of synthetic pathways and processes ( 6 ), 
and automation of complex spectral assignments ( 7 ).

 The seven research articles and two Perspectives included 
in this Special Feature on Machine Learning in Chemistry 
( 8               – 16 ) are illustrative of the transformative influence of data-
driven approaches on contemporary chemical research. The 
two Perspectives cover generative AI in computational chem-
istry ( 8 ) and equivariant neural networks in chemistry and 
physics ( 9 ). Within the broad categories of materials design 
and property prediction, topics covered in the research arti-
cles address protein design ( 10 ), transition metal complex 
design ( 11 ), quantum-accurate, data-driven modeling of cal-
cium carbonate in solution and in the solid state ( 12 ), and 
mechanisms of thermal transport in crystalline inorganic 
perovskites ( 13 ). Methodological learning advances pre-
sented include compact vectorized representation of chem-
ical environments leading to reduced model training and 
prediction compute times ( 14 ), ensuring viable synthetic 
pathways in model-generated molecules ( 15 ), and enforcing 
spatial distance constraints between atomic nuclei in model-
generated molecules ( 16 ). In what follows, we summarize 
each contribution.

 The Perspective by Tiwary et al. ( 8 ) offers a comprehensive 
overview of generative AI methods in computational chem-
istry. Approaches that generate new outputs (e.g., inferring 
phase transitions) by learning from existing data (e.g., limited 
configurational observations) are referred to as generative 
AI methods. The authors review fundamental concepts and 
definitions in generative AI and computational chemistry. 
They then provide an overview of generative AI methods, 
including autoencoders, adversarial networks, reinforcement 
learning, flow-based methods, and large language models. 
Selected applications in computational quantum chemistry, 
structural biology, and biophysics are discussed. Finally, the 
authors address desirable characteristics for generative AI 
methods in chemistry, emphasizing the ability to predict 
emergent chemical phenomena as an important objective.

 The Perspective by Kondor ( 9 ) provides an overview of the 
mathematical foundations and practical construction of equi-
variant neural networks (ENNs) for applications in physics 
and chemistry. The traditional AI models used in general 
domains, such as language or image recognition, do not 
explicitly incorporate physical symmetries. In physics and 
chemistry, symmetries such as translational, rotational, and 
identical particle exchange are exact and critical for models 

to make physically meaningful and generalizable predictions. 
ENNs are models designed to inherently respect such sym-
metries. They are built using group representation theory, 
enabling them to transform inputs and outputs in a mathe-
matically consistent way under group actions. The fundamen-
tal concepts discussed in this Perspective include invariance 
and equivariance: Invariant models output the same result 
regardless of transformations, whereas equivariant models 
output results that transform predictably under transforma-
tions (e.g., forces rotate consistently with atomic positions). 
The review also discusses group and irreducible representa-
tions, including the fundamental building blocks used to 
decompose and construct ENNs. As clearly outlined in this 
Perspective, ENNs have become central to the representation 
of molecular systems with translation, rotation, and permu-
tation symmetry and have established their usefulness in 
force field learning and property prediction in computational 
chemistry and physics.

 Sevgen et al. ( 10 ) tackle a fundamental problem in protein 
engineering, namely the discovery of sequences with desired 
functionality (the sequence-function problem). Combining two 
generative modeling approaches, namely transformer-based 
protein language models and variational autoencoders, they 
introduce the Protein Transformer Variational AutoEncoder 
model for data-driven protein design. Testing the model’s 
designs experimentally, the authors discover a phenylalanine 
hydroxylase (PAH) enzyme mutant with 2.5 times the catalytic 
activity relative to the human PAH wild type, and a γ-carbonic 
anhydrase (γ-CA) enzyme with a 61 °C melting temperature 
elevation relative to the highest similarity natural γ-CA, with 
stability at industrially relevant conditions for enzymatic car-
bon capture. The approach can be applied generically to other 
machine learning–guided directed evolution efforts ( 17 ) and 
enables direct learning of the sequence-to-function mapping, 
in the absence of structure data.

 In their paper, Toney et al. aim to generate three-
dimensional (3D) structures of transition metal complexes 
(TMCs) with predicted metal-ligand coordination ( 11 ). They 
use a large dataset of ligands of known coordination from 
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experimental structures of TMCs in the Cambridge Structural 
Database (CSD) to train and validate a graph neural network, 
with the goal of predicting the number and identities of 
ligand coordinating atoms in these complexes. With exten-
sive curation, the neural network is used to predict ligand-
metal coordination for previously unknown complexes, and 
these are validated by comparison with density functional 
theory (DFT) calculations. A Simplified Molecular Input Line 
Entry System (SMILES) representation of the complexes is 
used to define molecular structure for the training, while CSD 
data are based on atomic positions in 3D, so an important 
component of work is to assess the ability of the neural net-
work to connect SMILES to 3D. A careful accuracy analysis is 
performed based on the ability to reproduce the total num-
ber and individual identities of ligand-coordinating atoms. 
The accuracy is found to vary with the number of ligands and 
the choice of ligand and metal.

 Calcium carbonate is key to carbon sequestration technol-
ogy, the regulation of ocean acidity, and biomineralization. 
Piaggi et al. ( 12 ) develop a first-principles machine learning 
model to study the formation of calcium carbonate from 
aqueous solution using molecular dynamics simulation. The 
model strongly constrained and appropriately normed-ML 
(SCAN-ML) is trained on ab initio DFT forces and energies 
within the SCAN approximation for the exchange and corre-
lation functional ( 18 ). The approach naturally allows for the 
occurrence of chemical reactions, which are essential in the 
case of calcium carbonate formation. SCAN-ML captures a 
broad range of structural and dynamic properties of single 
ions in solution and calcium carbonate solid phases with an 
accuracy that surpasses state-of-the-art force fields and com-
pares very well with experiments, while also capturing ion 
pairing free energy curves and the structure of the calcite–
water interface.

 The low-temperature thermal conductivities of crystals and 
glasses exhibit distinct temperature dependencies (e.g., ~T3  
for crystals, ~T2  for glasses). However, some crystalline inor-
ganic perovskites exhibit glassy thermal conductivities at low 
temperatures. The origin of this behavior is not well under-
stood. Zeng et al. ( 13 ) study the thermal conductivity of the 
crystalline perovskite Cs3 Bi2 I6 Cl3 , using path integral molecular 
dynamics in conjunction with machine learning potentials. 
The authors are able to reproduce experimentally observed 
trends. They find that the system exhibits pronounced lattice 
distortions at low temperatures, which, the authors suggest, 
may be due to large atomic size mismatch.

 In developing many-body potential energy functions for 
molecules and solids, there is a tradeoff between how much 
physics is incorporated into the function used to represent 
the potential, usually expressed as the kernel that connects 
points in configuration space to energies used in training, 
and how much data are needed for generating a meaningful 

potential. The paper by Khan and von Lilienfeld ( 14 ) provides 
important new results related to improving the physics side 
of the story through the development of generalized convo-
lutional many-body distribution functionals (cMBDF) as com-
pute- and data-efficient atomic representations of the 
kernels. In this work, a kernel ridge regression (KRR)-based 
machine learning approach is used to represent atomic den-
sities weighted by interaction potentials. Representing den-
sities in terms of Gaussians greatly simplifies the analytical 
representation of the functionals, so that many results can 
be preevaluated on a grid and stored for later use. cMBDF is 
found to require 32 times less training data than atom-
centered symmetry functions ( 19 ) for the same accuracy, 
while still being faster to evaluate.

 The paper by Gao et al. ( 15 ) introduces a novel generative 
AI framework designed to efficiently generate synthesizable 
molecules by explicitly designing their synthetic pathways, 
overcoming the key limitation of prior models that often pro-
pose molecules that are impossible to synthesize. The key 
advance in this paper is to combine transformer architec-
tures with denoising diffusion models to generate synthetic 
routes, rather than just molecular structures. In doing so, the 
proposed approach ensures synthetic feasibility by operating 
within a chemical space defined by purchasable building 
blocks and reliable reaction templates; it addresses a critical 
bottleneck in generative molecular design by ensuring that 
every generated molecule is synthetically tractable, bridging 
AI design outputs and experimental feasibility.

 The paper by Liu et al. ( 16 ) introduces a new generative 
AI model for structure-based drug design. It aims to over-
come a key limitation in current models: The generation of 
molecules that contain atomic overlaps (e.g., atoms placed 
unrealistically close, violating physical constraints). Some 
existing models of molecules treat atoms as solid points 
without considering their electron cloud sizes, leading to 
unrealistic structures where atoms collide. The proposed 
model, NucleusDiff, consists of a diffusion-based generative 
model that explicitly incorporates the atomic nuclei position 
and their corresponding van der Waals radii by using discre-
tized mesh points. The resulting improvements are demon-
strated in the context of several applications, including 
improved binding affinity by up to 22% in general bench-
marks and 21% for COVID-19 targets. The proposed approach 
is phenomenological in nature and relies on discretized mesh 
points to approximate continuous manifolds; the authors 
explain how future improvements could seek to integrate 
first-principles quantum mechanical representations.

 We hope that the nine contributions that make up this 
Special Feature are able to convey the accomplishments, 
possibilities, and challenges that define the exciting scien-
tific frontier at the confluence of chemistry and machine 
learning.   
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