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Machine learning (ML), a subfield of artificial intelligence (Al),
involves the development of algorithms that enable com-
puter systems to learn from data and perform specific tasks
or make predictions without being explicitly programmed for
such tasks. ML has a broad range of applications in chemistry,
including protein design (1), drug and materials discovery (2),
property prediction (3), acceleration of quantum-accurate
simulations (4), computational catalysis and reaction engi-
neering (5), design of synthetic pathways and processes (6),
and automation of complex spectral assignments (7).

The seven research articles and two Perspectives included
in this Special Feature on Machine Learning in Chemistry
(8-16) are illustrative of the transformative influence of data-
driven approaches on contemporary chemical research. The
two Perspectives cover generative Al in computational chem-
istry (8) and equivariant neural networks in chemistry and
physics (9). Within the broad categories of materials design
and property prediction, topics covered in the research arti-
cles address protein design (10), transition metal complex
design (11), quantum-accurate, data-driven modeling of cal-
cium carbonate in solution and in the solid state (12), and
mechanisms of thermal transport in crystalline inorganic
perovskites (13). Methodological learning advances pre-
sented include compact vectorized representation of chem-
ical environments leading to reduced model training and
prediction compute times (14), ensuring viable synthetic
pathways in model-generated molecules (15), and enforcing
spatial distance constraints between atomic nuclei in model-
generated molecules (16). In what follows, we summarize
each contribution.

The Perspective by Tiwary et al. (8) offers a comprehensive
overview of generative Al methods in computational chem-
istry. Approaches that generate new outputs (e.g., inferring
phase transitions) by learning from existing data (e.g., limited
configurational observations) are referred to as generative
Al methods. The authors review fundamental concepts and
definitions in generative Al and computational chemistry.
They then provide an overview of generative Al methods,
including autoencoders, adversarial networks, reinforcement
learning, flow-based methods, and large language models.
Selected applications in computational quantum chemistry,
structural biology, and biophysics are discussed. Finally, the
authors address desirable characteristics for generative Al
methods in chemistry, emphasizing the ability to predict
emergent chemical phenomena as an important objective.

The Perspective by Kondor (9) provides an overview of the
mathematical foundations and practical construction of equi-
variant neural networks (ENNs) for applications in physics
and chemistry. The traditional Al models used in general
domains, such as language or image recognition, do not
explicitly incorporate physical symmetries. In physics and
chemistry, symmetries such as translational, rotational, and
identical particle exchange are exact and critical for models
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to make physically meaningful and generalizable predictions.
ENNs are models designed to inherently respect such sym-
metries. They are built using group representation theory,
enabling them to transform inputs and outputs in a mathe-
matically consistent way under group actions. The fundamen-
tal concepts discussed in this Perspective include invariance
and equivariance: Invariant models output the same result
regardless of transformations, whereas equivariant models
output results that transform predictably under transforma-
tions (e.g., forces rotate consistently with atomic positions).
The review also discusses group and irreducible representa-
tions, including the fundamental building blocks used to
decompose and construct ENNs. As clearly outlined in this
Perspective, ENNs have become central to the representation
of molecular systems with translation, rotation, and permu-
tation symmetry and have established their usefulness in
force field learning and property prediction in computational
chemistry and physics.

Sevgen et al. (10) tackle a fundamental problem in protein
engineering, namely the discovery of sequences with desired
functionality (the sequence-function problem). Combining two
generative modeling approaches, namely transformer-based
protein language models and variational autoencoders, they
introduce the Protein Transformer Variational AutoEncoder
model for data-driven protein design. Testing the model's
designs experimentally, the authors discover a phenylalanine
hydroxylase (PAH) enzyme mutant with 2.5 times the catalytic
activity relative to the human PAH wild type, and a y-carbonic
anhydrase (y-CA) enzyme with a 61 °C melting temperature
elevation relative to the highest similarity natural y-CA, with
stability at industrially relevant conditions for enzymatic car-
bon capture. The approach can be applied generically to other
machine learning-guided directed evolution efforts (17) and
enables direct learning of the sequence-to-function mapping,
in the absence of structure data.

In their paper, Toney etal. aim to generate three-
dimensional (3D) structures of transition metal complexes
(TMCs) with predicted metal-ligand coordination (11). They
use a large dataset of ligands of known coordination from
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experimental structures of TMCs in the Cambridge Structural
Database (CSD) to train and validate a graph neural network,
with the goal of predicting the number and identities of
ligand coordinating atoms in these complexes. With exten-
sive curation, the neural network is used to predict ligand-
metal coordination for previously unknown complexes, and
these are validated by comparison with density functional
theory (DFT) calculations. A Simplified Molecular Input Line
Entry System (SMILES) representation of the complexes is
used to define molecular structure for the training, while CSD
data are based on atomic positions in 3D, so an important
component of work is to assess the ability of the neural net-
work to connect SMILES to 3D. A careful accuracy analysis is
performed based on the ability to reproduce the total num-
ber and individual identities of ligand-coordinating atoms.
The accuracy is found to vary with the number of ligands and
the choice of ligand and metal.

Calcium carbonate is key to carbon sequestration technol-
ogy, the regulation of ocean acidity, and biomineralization.
Piaggi et al. (12) develop a first-principles machine learning
model to study the formation of calcium carbonate from
aqueous solution using molecular dynamics simulation. The
model strongly constrained and appropriately normed-ML
(SCAN-ML) is trained on ab initio DFT forces and energies
within the SCAN approximation for the exchange and corre-
lation functional (18). The approach naturally allows for the
occurrence of chemical reactions, which are essential in the
case of calcium carbonate formation. SCAN-ML captures a
broad range of structural and dynamic properties of single
ions in solution and calcium carbonate solid phases with an
accuracy that surpasses state-of-the-art force fields and com-
pares very well with experiments, while also capturing ion
pairing free energy curves and the structure of the calcite-
water interface.

The low-temperature thermal conductivities of crystals and
glasses exhibit distinct temperature dependencies (e.g., ~T°
for crystals, ~T° for glasses). However, some crystalline inor-
ganic perovskites exhibit glassy thermal conductivities at low
temperatures. The origin of this behavior is not well under-
stood. Zeng et al. (13) study the thermal conductivity of the
crystalline perovskite Cs3Bi,lsCls, using path integral molecular
dynamics in conjunction with machine learning potentials.
The authors are able to reproduce experimentally observed
trends. They find that the system exhibits pronounced lattice
distortions at low temperatures, which, the authors suggest,
may be due to large atomic size mismatch.

In developing many-body potential energy functions for
molecules and solids, there is a tradeoff between how much
physics is incorporated into the function used to represent
the potential, usually expressed as the kernel that connects
points in configuration space to energies used in training,
and how much data are needed for generating a meaningful
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potential. The paper by Khan and von Lilienfeld (14) provides
important new results related to improving the physics side
of the story through the development of generalized convo-
lutional many-body distribution functionals (c(MBDF) as com-
pute- and data-efficient atomic representations of the
kernels. In this work, a kernel ridge regression (KRR)-based
machine learning approach is used to represent atomic den-
sities weighted by interaction potentials. Representing den-
sities in terms of Gaussians greatly simplifies the analytical
representation of the functionals, so that many results can
be preevaluated on a grid and stored for later use. cMBDF is
found to require 32 times less training data than atom-
centered symmetry functions (19) for the same accuracy,
while still being faster to evaluate.

The paper by Gao et al. (15) introduces a novel generative
Al framework designed to efficiently generate synthesizable
molecules by explicitly designing their synthetic pathways,
overcoming the key limitation of prior models that often pro-
pose molecules that are impossible to synthesize. The key
advance in this paper is to combine transformer architec-
tures with denoising diffusion models to generate synthetic
routes, rather than just molecular structures. In doing so, the
proposed approach ensures synthetic feasibility by operating
within a chemical space defined by purchasable building
blocks and reliable reaction templates; it addresses a critical
bottleneck in generative molecular design by ensuring that
every generated molecule is synthetically tractable, bridging
Al design outputs and experimental feasibility.

The paper by Liu et al. (16) introduces a new generative
Al model for structure-based drug design. It aims to over-
come a key limitation in current models: The generation of
molecules that contain atomic overlaps (e.g., atoms placed
unrealistically close, violating physical constraints). Some
existing models of molecules treat atoms as solid points
without considering their electron cloud sizes, leading to
unrealistic structures where atoms collide. The proposed
model, NucleusDiff, consists of a diffusion-based generative
model that explicitly incorporates the atomic nuclei position
and their corresponding van der Waals radii by using discre-
tized mesh points. The resulting improvements are demon-
strated in the context of several applications, including
improved binding affinity by up to 22% in general bench-
marks and 21% for COVID-19 targets. The proposed approach
is phenomenological in nature and relies on discretized mesh
points to approximate continuous manifolds; the authors
explain how future improvements could seek to integrate
first-principles quantum mechanical representations.

We hope that the nine contributions that make up this
Special Feature are able to convey the accomplishments,
possibilities, and challenges that define the exciting scien-
tific frontier at the confluence of chemistry and machine
learning.
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