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ABSTRACT
Understanding the condensed-phase behavior of chiral molecules is important in biology as well as in a range of technological applications,
such as the manufacture of pharmaceuticals. Here, we use molecular dynamics simulations to study a chiral four-site molecular model that
exhibits a second-order symmetry-breaking phase transition from a supercritical racemic liquid into subcritical D-rich and L-rich liquids.
We determine the infinite-size critical temperature using the fourth-order Binder cumulant, and we show that the finite-size scaling behavior
of the order parameter is compatible with the 3D Ising universality class. We also study the spontaneous D-rich to L-rich transition at a
slightly subcritical temperature of T = 0.985Tc, and our findings indicate that the free energy barrier for this transformation increases with
system size as N2/3, where N is the number of molecules, consistent with a surface-dominated phenomenon. The critical behavior observed
herein suggests a mechanism for chirality selection in which a liquid of chiral molecules spontaneously forms a phase enriched in one of
the two enantiomers as the temperature is lowered below the critical point. Furthermore, the increasing free energy barrier with system size
indicates that fluctuations between the L-rich and D-rich phases are suppressed as the size of the system increases, trapping it in one of
the two enantiomerically enriched phases. Such a process could provide the basis for an alternative explanation for the origin of biological
homochirality. We also conjecture the possibility of observing nucleation at subcritical temperatures under the action of a suitable chiral
external field.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161732

I. INTRODUCTION

Fundamental building blocks involved in the complex machin-
ery of biological cells exist as a single enantiomer, one of the two pos-
sible isomers of a chiral molecule. For instance, naturally occurring
amino acids are left-handed, while sugars are right-handed.1,2 The
emergence of this phenomenon, known as biological homochirality,
remains incompletely understood.1 Several theories have attempted
to shed light on the origin of biological homochirality, including
the explanation that an enantiomer may act as a catalyst for its own
formation.3,4 Another theory proposes that chiral symmetry break-
ing can emerge from the equilibrium solid–liquid phase behavior
of amino acids in solution.5,6 It has also been suggested that parity
violation could account for very small energy differences between
enantiomers and, thus, give rise to a preferred chirality.7 Biological
homochirality is also of importance in the food, cosmetic, and phar-
maceutical industries, as enantiomers can interact in dramatically
different ways with receptors in the human body.8

Simulations can provide atomistic-level insight into the behav-
ior of molecular systems, including chiral molecules in particular.
Latinwo et al.9 introduced a molecular model for a chiral tetramer
suitable for molecular dynamics (MD) simulations. The model is
able to switch between two chiral conformers and describe inter-
molecular interactions in the condensed phase. A key feature of this
model is a chiral renormalization factor, which can be tailored to
enhance homochiral or heterochiral short-range interactions. The
thermodynamics of this model were recently investigated by Wang
et al.,10 who showed that this model exhibits spontaneous symmetry
breaking below a critical temperature when homochiral interactions
are favored. At these conditions, two symmetry-equivalent phases
can form: a D-rich liquid and an L-rich liquid. Spontaneous symme-
try breaking in a liquid of chiral molecules has also been observed
experimentally by Dressel et al.11

Here, we revisit the chiral tetramer model and investigate its
critical behavior and liquid–liquid transition. Our findings confirm
the existence of a critical point in this model and provide insight into
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the universality class it belongs to. We also study the kinetics of the
liquid–liquid transition and suggest a scaling law for the free energy
barrier with system size. Finally, we analyze the cluster size distri-
bution during the liquid–liquid transformation in order to better
understand the mechanism of this transition.

II. METHODS
A. Molecular chiral model

The model introduced by Latinwo et al.9 considers four-bead
tetramers able to switch between two chiral conformations [see
Fig. 1(c)]. The potential energy within this model is

U(R) = Uintra(R) +Uinter(R), (1)

where U intra and U inter are intra- and inter-molecular interactions,
respectively, and R are the atomic coordinates. The intramolecular
interactions in a system of N molecules are given by

Uintra(R) =
N

∑
i=1

⎛
⎝

3

∑
j=1

kb

2
(∣ri

j − ri
j+1∣ − b)2
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where ri
j is the position of bead j ( j = 1, 2, 3, 4) of the ith molecule, θi

k

with k = 1, 2 are the two bond angles in the ith molecule, and ϕi is the
dihedral angle of the ith molecule. The strength of the intramolecu-
lar interactions is controlled by the force constants kb, ka, and kd
for the bond length, angle, and dihedral. The equilibrium molecular
geometry is given by the bond length b, the angles π/2, and the dihe-
dral ±π/2. The two chiral molecular conformers are characterized
by dihedral angles of +π/2 and −π/2.

The intermolecular interactions in this model are given by

Uinter(R) =
N

∑
i=1

N

∑
j=i+1

4

∑
l=1

4

∑
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∣ri
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), (3)

where indices i and j refer to the molecules, and l and m refer to the
four beads in each molecule. vLJ is the smooth force variant12 of the
Lennard–Jones potential, i.e.,

vLJ(r) =
⎧⎪⎪⎨⎪⎪⎩

ϕ(r) − ϕ(rc) − (r − rc)ϕ′(rc) if r ≤ rc

0 if r > rc ,
(4)

where ϕ(r) = 4(r−12 − r−6) is the standard Lennard–Jones potential,
rc is the cutoff for the vLJ(r) potential, and ϕ′(r) is the first deriva-
tive of ϕ(r) with respect to r. A key feature in this model is the
chiral renormalization factor ϵ(Ri, R j), which controls the strength
of the intermolecular interactions and depends on the chiral states
of molecules i and j defined through vectors Ri = {ri

1, ri
2, ri

3, ri
4} and

R j = {r j
1, r j

2, r j
3, r j

4} that contain the coordinates of the four sites of
the ith and jth molecules, respectively. The functional form of the
renormalization factor is

ϵ(Ri, R j) = ϵ0[1 + λζ(Ri)ζ(R j)], (5)

where −1 < ζ < 1 represents the chirality of each molecule. The
behavior of the model can be tuned via the parameter λ, which intro-
duces a preference for homochiral intermolecular interactions if it is
positive and heterochiral interactions if it is negative. For the four-
site model considered here, the chirality of each molecule can be
calculated as

ζ(Ri) = − ri
12 ⋅ (ri

23 × ri
34)

∣ri
12∣ ∣ri

23∣ ∣ri
34∣

, (6)

where ri
jk = ri

j − ri
k. With the definition in Eq. (6), ζ = 1 for D

enantiomers and ζ = −1 for L enantiomers. We note that the mathe-
matical definition of ζ(Ri) in Eq. (6) captures the essence of chirality,
i.e., ζ(Ri) is by construction a pseudo-scalar and, thus, changes
sign under a parity transformation (reflection with respect to a
plane).

FIG. 1. Liquid–liquid interconversion in the chiral tetramer model with system size N = 1000. (a) Mean chirality ζ̄ vs simulation steps for temperatures T = 4.3, 4.4, 4.5, and
4.6. (b) Free energy as a function of the order parameter ζ̄. Curves are color-coded to match temperatures in panel (a). We have imposed even parity on the free energy
curves due to symmetry considerations. (c) Snapshot of a configuration at T = 4.6. Molecules are colored according to their chirality ζ. The enantiomers D and L are also
shown.
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B. Molecular dynamics simulations
We performed all simulations using the MD engine, Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)13

(version February 1, 2014), and an implementation of the potential
energy of the chiral model based on Ref. 14. The intermolecular term
of the potential energy, U inter(R), gives rise to an eight-body force
involving all four sites of pairs of tetramer molecules. This force was
calculated as described by Petsev et al.15

We carried out the simulations in the canonical ensemble with
a density of 0.11 molecules/σ3. We controlled the temperature con-
stant using a Nosé–Hoover thermostat,16,17 and we employed a time
step of 10−3 (reduced units are used unless otherwise specified). The
parameters of the chiral molecular model were kb = 8003, ka = 643.7,
kd = 17.86, b = 1.0583, σ = 1, ϵ0 = 1, rc = 4.0, and the mass of the
tetramer beads was set to m = 1. Following Ref. 10, we chose λ = 0.5
in order to favor homochiral interactions. We rebuilt neighbor lists18

every ten steps with a cutoff of 4σ, and we used a neighbor-list skin
of 0.3σ. For this thin neighbor-list skin, we observed a small drift
of the total energy in NVE simulations over long simulation times.
To avoid artifacts, we used a neighbor-list skin of 1.5σ for simula-
tions longer than 5 × 108 steps. We recommend a neighbor-list skin
of 1.5σ for future simulations.

C. Clustering
We performed clustering using a distance-based criterion

wherein two beads are considered to be adjacent if (1) their distance
is below 1.5σ and (2) they have the same chirality (both molecules
satisfy ζ > 0 or ζ < 0). Based on this adjacency criterion, we subse-
quently find the connected components (clusters) using the analysis
software Freud 2.8.0.19 Since the equilibrium distance between beads
within a molecule is around σ, we can calculate the number of con-
nected molecules nc within a cluster as the total number of connected
beads divided by the number of beads in a molecule, i.e., four. This
algorithm could fail to recognize that two beads in a molecule are
connected if their distance were greater than 1.5σ. However, this
event has negligible probability and was not observed in our sim-
ulations. An alternative clustering strategy could have employed the
centers of mass of the tetramers.

III. RESULTS
A. Critical behavior

We first investigate the behavior of the model at constant
density and varying temperature for a system of 1000 tetramer
molecules. In Fig. 1(a), we show the mean chirality, defined as
ζ̄ = (1/N)∑N

i=1 ζ(Ri), as a function of the simulation steps for tem-
peratures T equal to 4.3, 4.4, 4.5, and 4.6. The mean chirality ζ̄ is
a natural order parameter for this model. At T = 4.5 and T = 4.6, ζ̄
fluctuates around 0, indicating the presence of a racemic mixture
at these conditions. If the temperature is lowered to T = 4.4, fluc-
tuations in ζ̄ increase significantly and span a relatively large range
ζ̄ ∈ (−0.5, 0.5). At an even lower temperature, T = 4.3, ζ̄ shows clear
bistable behavior and alternates between a D-rich phase and a L-rich
phase.

In order to provide further insight into this behavior, we
calculate the free energy as a function of ζ̄, which we define as

F(ζ̄) = −kBT ln P(ζ̄), where P(ζ̄) is the probability of observing a
given value of ζ̄ and kB is the Boltzmann constant. F(ζ̄) is shown in
Fig. 1(b) for the four temperatures described above. As expected, for
T ≳ 4.5, the free energy profiles show a single minimum centered at
ζ̄ = 0. At T = 4.4, the free energy profile is relatively flat and starts
to develop two minima. Finally, at T = 4.3, the symmetry break-
ing becomes evident, and F(ζ̄) shows two symmetric, well-defined
minima. Overall, the results are characteristic of a second-order,
symmetry-breaking phase transition with a critical point, slightly
above T = 4.4. As a result of the symmetry breaking, below the
critical point enantiomers can be classified as minority and major-
ity enantiomers, depending on which of the two enantiomers is
predominant. In Fig. 1(c), we show a snapshot of a configuration
at supercritical temperature T = 4.6 that corresponds to a racemic
mixture.

B. Infinite-size critical temperature and finite-size
scaling

The results described above correspond to a system of 1000
molecules. Thus, they can be affected by finite-size effects. For this
reason, we also studied systems of 2000, 4000, and 8000 molecules.
In Fig. 2(a), we show the ensemble average of ∣ζ̄∣ (denoted by ⟨∣ζ̄∣⟩)
as a function of temperature for different system sizes. ⟨∣ζ̄∣⟩ vanishes
at high temperatures and takes on a finite value at low temperatures.
As expected for a second order phase transition, the crossover from
the high-temperature to the low-temperature phase is smoother for
smaller system sizes. The critical temperature in the thermodynamic
limit can be estimated from finite system simulations using the
fourth-order Binder cumulant,20

U4 = 1 − ⟨ζ̄
4⟩

3⟨ζ̄ 2⟩2
, (7)

which has a fixed point U∗4 at the infinite-size critical temperature for
any system size. In Fig. 2(b), we show U4 vs temperature for differ-
ent system sizes. The critical temperature can be determined by the

FIG. 2. Finite-size effects in the critical behavior of the chiral tetramer. (a) Ensem-
ble average ⟨∣ζ̄∣⟩ of the mean chirality ζ̄ vs temperature for systems sizes
N = 1000, 2000, 4000, and 8000. The solid black line is a linear interpolation to
the expected behavior of ⟨∣ζ̄∣⟩ for N →∞, namely, ⟨∣ζ̄∣⟩ = 0 for T ≥ Tc , with
Tc the infinite-size critical temperature. (b) Fourth-order Binder cumulant (U4)

vs temperature. The fixed point U∗4 is marked with a horizontal dashed line. The
infinite-system-size critical temperature is shown in (a) and (b) with a vertical
dashed line.
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fixed point at which these curves cross each other. From this analysis,
we determine that Tc ≈ 4.365 is the critical temperature in the ther-
modynamic limit. Furthermore, U4 at the fixed point (U∗4 ) depends
only on the universality class. Here, we found U∗4 ≈ 0.46, which is
in good agreement with the value for the 3D Ising universality class
U∗4 = 0.466(1).21

We also study the finite-size scaling of the order parameter ζ̄ in
order to provide further evidence of this system’s universality class.
The order parameter in a second order phase transition follows the
following finite-size scaling:22

M Lβ/ν = M0(ϵL1/ν), (8)

where M is the order parameter, L is the simulation box side, β
and ν are critical exponents, M0 is the universal function, and
ϵ = ∣T − Tc∣/Tc. We thus plot ⟨∣ζ̄∣⟩ Lβ/ν vs ϵL1/ν using our simula-
tion data at different temperatures and system sizes. We choose the
exponents β = 0.326 419(3) and ν = 0.629 971(4) of the 3D Ising
universality class.23 Our results, depicted in Fig. 3, show that data for
all system sizes follow the universal behavior predicted by the finite-
size scaling hypothesis in Eq. (8). These results lend strong support
to the hypothesis that the chiral tetramer system belongs to the 3D
Ising universality class since the other choices of exponents β and ν
do not lead to correct finite-size scaling.

The dashed lines in Fig. 3 illustrate the power law behav-
ior of ⟨∣ζ̄∣⟩ Lβ/ν at temperatures well above and well below the
critical temperature. In the low-temperature regime, ⟨∣ζ̄∣⟩ is con-
stant with system size, and ⟨∣ζ̄∣⟩Lβ/ν ∝ Lβ/ν = xβ with x = L1/ν. Thus,
the slope of the upper branch of the curve in Fig. 3 is β. On
the other hand, in the high-temperature regime, ⟨∣ζ̄∣⟩∝ N−1/2 and
⟨∣ζ̄∣⟩Lβ/ν ∝ Lβ/ν−3/2 = xβ−3ν/2. Therefore, β − 3ν/2 is the slope of the
lower branch of the curve in Fig. 3. The data in Fig. 3 indeed supports
the slopes derived above. We note that the slopes for the power law
behavior were obtained for ⟨∣ζ̄∣⟩Lβ/ν as a function of L1/ν, while in
Fig. 3 we plot ⟨∣ζ̄∣⟩Lβ/ν vs ϵL1/ν (instead of L1/ν). This approximation
is valid if log(L1/ν)/ − log(ϵ)≫ 1, which is satisfied by our data for
a sufficiently large ϵL1/ν.

FIG. 3. Finite-size scaling of the order parameter ⟨∣ζ̄∣⟩. L is the distance such that
L∝ N1/3, β and ν are critical exponents, and ϵ = (T − Tc)/Tc . The dashed lines
illustrate the power law behavior of ⟨∣ζ̄∣⟩ Lβ/ν at temperatures well above and well
below the critical temperature. The slope of the upper branch of the curve is β, and
the slope of the lower branch is β − 3ν/2.

C. Kinetics of the liquid–liquid interconversion
We now analyze the kinetics of the transition between the D-

rich and the L-rich phases at a subcritical temperature a T = 4.3. In
Fig. 4(a), we show ζ̄ as a function of the simulation steps for differ-
ent system sizes. The results clearly indicate that the interconversion
between these phases becomes more infrequent for larger systems.
We also calculated the free energies as a function of the order para-
meter ζ̄, and we show them in Fig. 4(b). The free energy near ζ̄ ≈ 0
is not well resolved for the largest system (N = 8000) due to poor
sampling. The free energies in Fig. 4(b) can be fit into a Landau
model,24

F(ζ̄) = A(T − Tc)ζ̄ 2 + Bζ̄ 4, (9)

FIG. 4. Liquid–liquid interconversion at subcritical temperature T = 4.3. (a) Mean chirality ζ̄ vs simulation steps for system sizes N = 1000, 2000, 4000, and 8000. (b) Free
energy as a function of ζ̄. We have imposed even parity on the free energy curves due to symmetry considerations. The shaded area is the one standard deviation error
calculated with four-fold block averaging. The dashed lines fit the Landau free energy model. (c) Free energy barriers ΔF‡, with error bars representing the standard deviation
of the mean calculated using four-fold block averages. A fit to the expression ΔF‡

∝ N2/3, which corresponds to a surface-dominated barrier, is shown with a dashed line.
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TABLE I. Parameters in the Landau model [Eq. (9)] A, B, and Tc for different system
sizes N at temperature T = 4.3. The errors were calculated as the standard deviation
of the mean using four-fold block averages.

N A B Tc

1000 467(14) 79(1) 4.36(1)
2000 704(26) 135(3) 4.36(1)
4000 1010(10) 209(9) 4.36(1)

where A > 0 and B > 0 have to be determined. The Landau model
fits the simulation results well [see Fig. 4(b)], and the parameters A,
B, and Tc determined for each system size are shown in Table I.

The results in Fig. 4(b) clearly show that the free energy bar-
rier for the transition becomes progressively larger as a function of
system size. The free energy barriers ΔF‡ are plotted in Fig. 4(c) and
appear to scale with system size as ΔF‡ ∝ N2/3, compatible with a
surface-dominated phenomenon. The same scaling (ΔF‡ ∝ N2/3) is
well-known for the Ising model.25 Note also that the barrier ΔF‡

diverges in the thermodynamic limit, signaling ergodicity breaking
and, thus, liquid–liquid interconversion is a finite-size effect. The
interconversion time increasing with system size can be understood
by noting that when transitioning from an L-rich to a D-rich phase
(or vice versa), the system must necessarily traverse the condition
ζ̄ = 0. This corresponds to the maximum possible number of ener-
getically unfavorable heterochiral contacts (λ > 0), and one expects
this effective barrier to scale as N2/3. This is consistent with the
behavior shown in Fig. 4(c).

D. Nucleation
The dependence of the interconversion rate with system size

shown in Fig. 4(a) is, of course, at odds with the predictions of nucle-
ation theory. The nucleation rate is defined as J = 1/(τV), where τ
is the average time to form a critical cluster in the volume V . Within
classical nucleation theory, the rate is

J ∝ exp(−ΔF
kBT
), (10)

where ΔF is the microscopic barrier, independent of system size.
Thus, in nucleation phenomena, one expects to observe a faster tran-
sition (smaller τ) as the size of the system increases, while in Fig. 4(a),
we observe the opposite trend.

The absence of nucleation in the D-rich to L-rich phase trans-
formation is not surprising. The driving force for nucleation is the
difference in chemical potential between the mother phase and the
new phase. In this case, the D-rich phase and the L-rich phase have
the same chemical potential μL = μD and, thus, there is no driving
force for nucleation. The equality of the chemical potentials fol-
lows from the fact that the energy in this model is invariant under
a parity transformation. Thus, it is impossible to trigger a phase
transformation between the D-rich and the L-rich liquids through
thermodynamic means, i.e., via changes in temperature and pres-
sure. One may speculate that in a realistic chiral molecule, parity
violation could lead to μL ≠ μD. However, the difference in chemical
potential would likely be too small to promote nucleation.

The behavior described above for the chiral molecular model is
similar to that of the Ising model in the absence of an external field.22

In analogy to the Ising model, we conjecture that one may intro-
duce an external field h that couples to the order parameter ζ̄. The
potential energy in the presence of an external field can be written as

U′(R) = U(R) −N ζ̄ h, (11)

where U(R) is defined in Eq. (1), and h is a scalar field. The added
term N ζ̄ h is chiral (a pseudoscalar) and, thus, creates a chemical
potential imbalance μL ≠ μD for h ≠ 0. If a suitable chiral external
field can be devised, it should be possible to trigger the spontaneous
transformation between the D-rich and the L-rich liquids. Further-
more, we expect the transformation to proceed through nucleation
and growth.

E. Phase diagram at constant volume and number
of molecules

The second term on the right-hand side of Eq. (11) identifies
N ζ̄ and h as the thermodynamic conjugate variables. The total chi-
rality N ζ̄ is the extensive variable, in analogy to the volume V , the
number of particles N, or the magnetization M, and the field h is
the intensive variable, in analogy to the pressure P, the chemical
potential μ, or an external magnetic field H. We can thus construct
phase diagrams for this model while keeping either N ζ̄ or h con-
stant. The phase diagram in the ζ̄ − T plane is shown in Fig. 5(a),
and the phase diagram in the h–T plane is shown in Fig. 5(b). In
both phase diagrams, we consider that the volume and number of

FIG. 5. Phase diagram of the chiral tetramer model at constant volume and con-
stant number of molecules. (a) At constant ζ̄ and T the phase diagram exhibits a
miscibility gap (blue line) between the D-rich and L-rich liquids. (b) At constant h
and T , the phase diagram shows a coexistence line (blue line) between the D-rich
and L-rich liquids and ends in a critical point (blue circle). Note that in our simula-
tions, we never observe phase coexistence but, rather, the system spontaneously
forms either the L- or D-rich phases with equal probability. The critical temperature
is also shown with a dashed gray line. In panel (b), the stable phase above the crit-
ical point is a racemic mixture. ζ̄ is the mean chirality, and h is the field conjugate
to ζ̄.

J. Chem. Phys. 159, 114502 (2023); doi: 10.1063/5.0161732 159, 114502-5

Published under an exclusive license by AIP Publishing

 18 Septem
ber 2023 19:40:37

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

molecules are constant. The ζ̄ − T phase diagram in Fig. 5(a) con-
tains a miscibility gap between the D-rich and the L-rich liquids. It
thus strongly resembles the phase diagram of an immiscible mixture
(such as oil and water) in the composition-T plane or the phase dia-
gram of a liquid–gas transition in the V–T plane. On the other hand,
the h–T phase diagram in Fig. 5(b) exhibits a line of D-rich/L-rich
coexistence that ends at a critical point. The h–T phase diagram is,
therefore, reminiscent of the phase diagram of the liquid–gas transi-
tion in the P–T plane or the phase diagram of the Ising model in the
H–T plane.

The simulations reported here correspond to the condition of
constant field h = 0 and ζ̄ being allowed to change freely (NVTh
ensemble). The phase diagram for this condition is given in Fig. 5(b).
We note that we did not simulate the condition of constant ζ̄ rep-
resented in the phase diagram in Fig. 5(a). It would be possible
to simulate this system at constant ζ̄ (NVTζ̄ ensemble) by increas-
ing the force constant kd for the dihedral term in Eq. (2) in order
to hinder the interconversion between the L and D enantiomers.
The absence of interconversion (constant ζ̄) would lead to a phase
behavior consistent with Fig. 5(a).

We stress that there is a fundamental difference between the
fixed-composition binary mixture, and the chiral system simulated
in this work. In a fixed-composition binary mixture the system
phase-separates, and an interface forms between coexisting phases.
In the present chiral system, the composition is not fixed since each
molecule can freely change its chirality. Thus, below the critical tem-
perature, the system avoids the formation of an energetically costly
interface (λ > 0) and stochastically forms either the L-rich or the
D-rich mixture with equal probabilities, and in equilibrium in the
thermodynamic limit, it does not form coexisting phases.

F. Transformation mechanism and structure
of the subcritical phases

We now turn to characterize the atomistic-level structure
of the broken-symmetry, subcritical phases. Considering that our
model favors homochiral interactions, we expect to see clusters of
molecules with the same chirality. For this reason, we calculate
the cluster-size distribution P(nc) of clusters of L-type molecules
and D-type molecules (see Sec. II C for further details). Due to
symmetry considerations, we have combined the clustering results
of the D and L enantiomers. For visualization purposes, we con-
vert the cluster-size distribution P(nc) to a free energy F(nc)
= −kBT ln P(nc).

The free energy vs cluster size F(nc) is shown in Fig. 6(b) at
T = 4.3 and for different system sizes. The results are separated
into clusters of the majority enantiomer (molecules with ζ > 0 when
ζ̄ > 0, or molecules with ζ < 0 when ζ̄ < 0) and clusters of the minor-
ity enantiomer (molecules with ζ > 0 when ζ̄ < 0, or molecules with
ζ < 0 when ζ̄ > 0). The free energy curves have three minima that
correspond to (1) a cluster of the majority enantiomer of size nc/N
≈ 0.75, (2) a cluster of the minority enantiomer of size nc/N ≈ 0.2,
and (3) small clusters with nc/N < 0.05 mainly from the minority
enantiomer. In order to visualize these three cluster populations, we
show in Figs. 6(a) and 6(c) snapshots of an equilibrium configura-
tion for a system of 8000 molecules in the L-rich phase at T = 4.3.
In Fig. 6(a), only molecules with ζ > 0 are shown, which correspond
to clusters of the minority D enantiomer in the L-rich phase. We
observe a cluster of intermediate size and several smaller clusters that
correspond to the minima at nc/N ≈ 0.2 and nc/N < 0.05, respec-
tively. On the other hand, in Fig. 6(c), only molecules with ζ < 0 are
shown, which correspond to clusters of the majority L enantiomer

FIG. 6. Characterization of the structure of the broken-symmetry, subcritical phases at T = 4.3. (a) Snapshot of the minority enantiomer (D) in the equilibrium L-rich phase
for a system of N = 8000 molecules. In the upper panel, molecules are colored according to their chirality (see Fig. 1 for a color scale). In the lower panel, a surface mesh is
shown in transparent blue to illustrate the cluster distribution. The surface was constructed using the alpha-shape method with a probe sphere radius of 1.2, as implemented
in Ovito.26,27 (b) Free energy vs cluster size at T = 4.3 and for different system sizes N = 1000, 2000, 4000, and 8000. The results are separated into clusters of the majority
enantiomer and clusters of the minority enantiomer. (c) Snapshot of the majority enantiomer (L) in the equilibrium L-rich phase. In the upper panel, molecules are colored
according to their chirality (see Fig. 1 for a color scale). In the lower panel, a surface mesh is shown in transparent orange to illustrate the cluster distribution.
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FIG. 7. Transformation from the D-rich to the L-rich phase. We show snapshots of the configuration of the D enantiomers along the transformation. The snapshots correspond
to (a) ζ̄ ≈ 0.4, (b) ζ̄ ≈ 0, and (c) ζ̄ ≈ −0.4. In these snapshots, we display simultaneously the molecules and the surface mesh. Other visualization details are the same as in
Fig. 6.

in the L-rich phase. Here, we observe a large cluster of the major-
ity enantiomer that matches the minimum at nc/N ≈ 0.75 in the
free energy vs cluster size curve. We also note that the cluster-size
distribution is system size dependent, at variance with nucleation
phenomena where the cluster-size distribution is independent of
system size.28,29

So far, we have focused on the equilibrium configuration of the
system. We now turn to analyze the transition between the D-rich
and L-rich phases in a system of N = 4000 at T = 4.3. In Fig. 7, we
show three snapshots along the spontaneous D-rich to L-rich trans-
formation. Figure 7(a) depicts the majority enantiomer (D) in the
D-rich phase with ζ̄ ≈ 0.4. In Fig. 7(b), we show the D enantiomer at
the transition state ζ̄ ≈ 0. The transition state can be associated with
the most infrequent cluster nc/N ≈ 0.5 in the cluster size distribution
in Fig. 6(b). Indeed, the snapshot of the transition state in Fig. 7(b)
shows a cluster of size nc/N ≈ 0.5. Due to symmetry considerations,
we expect that the transition state is characterized by a cluster of D
with nc/N ≈ 0.5 and a cluster of L with nc/N ≈ 0.5. Further analysis
also shows that the two clusters with nc/N ≈ 0.5 coexist with small
clusters of size nc/N < 0.01, probably arising from thermal fluctua-
tions. The fact that enantiomers form clusters of size nc/N ≈ 0.5 at
the transition state indicates that the free energy is surface domi-
nated, and lends further credence to our previous finding that the
free energy barrier scales such as ΔF‡ ∝ N2/3. Finally, in Fig. 7(c),
we show the minority enantiomer (D) in the L-rich phase, which is
the end state of the transformation.

IV. CONCLUSIONS
Our simulations confirm the existence of a second-order

symmetry-breaking phase transition in the chiral tetramer model
proposed by Latinwo et al.9 and Petsev et al.15 We also show that
the critical behavior in this system is compatible with the 3D Ising
universality class. Thus, a similar behavior can be expected in real
chiral molecules, regardless of the details of the intermolecular

interactions. This symmetry-breaking transition could provide an
alternative explanation for the origin of biological homochirality.

Furthermore, our findings indicate that at a slightly subcriti-
cal temperature, T = 0.985Tc, the free energy barrier ΔF‡ for the
interconversion between the subcritical D-rich and L-rich liquids
increases with system size. Our data supports a surface-dominated
scaling law: ΔF‡ ∝ N2/3, where N is the number of molecules.
In addition, the increase in free energy barrier with size implies
that once a liquid with strong homochiral interactions is suffi-
ciently large, fluctuations between the L-rich and D-rich phases are
suppressed. The system can thus remain in a liquid state, highly-
enriched in one of the two enantiomers. Our analysis also shows
that in this system, there is no driving force for nucleation as a
result of the equal chemical potentials of the subcritical phases. We
conjecture that nucleation may be triggered by an appropriate chiral
external field that creates a chemical potential imbalance.

Finally, we analyze the molecular structure of the subcritical liq-
uids at temperature T = 0.985Tc using the cluster-size distribution
for the majority and minority enantiomers. We find that the major-
ity enantiomer forms a relatively large cluster of size ∼0.75 N. The
minority enantiomer forms a cluster of size ∼0.2 N and smaller clus-
ters of size <0.05 N. In the transformation from the L-rich to the
D-rich phase, the transition state is characterized by clusters of size
∼0.5 N for both enantiomers. The observation of large single clusters
for each enantiomer supports the surface-dominated scaling law for
ΔF‡.

The chiral molecular model employed in this work could be
improved and extended in several directions. For example, realis-
tic force constants in real units could be used instead of dimen-
sionless quantities in order to investigate the characteristic time
scales for enantiomer interconversion and phase separation over
a range of realistic conditions. In addition, it would be interest-
ing to develop models of biologically relevant chiral molecules
and of chiral molecules solvated in water. Furthermore, the inter-
molecular interactions could be made more realistic and accurate
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through the use of deep learning to develop potentials with ab initio
accuracy.

Future work could also address the calculation of free energy
barriers with greater precision in order to provide stronger evidence
of the dependence of the free energy barrier ΔF‡ on system size.
Enhanced sampling methods, such as umbrella sampling,30 could be
useful to obtain accurate predictions for free energy barriers. Finally,
it would be interesting to evaluate critical exponents near the conflu-
ence of liquid–liquid and liquid–gas critical points (see Ref. 10 for a
discussion about this phenomenon).
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