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ABSTRACT
The possible existence of a liquid–liquid critical point in deeply supercooled water has been a subject of debate due to the challenges associated
with providing definitive experimental evidence. The pioneering work by Mishima and Stanley [Nature 392, 164–168 (1998)] sought to shed
light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the
expected liquid–liquid transition and its associated critical point. Based on the continuous or discontinuous changes in the slope of the
melting curves, Mishima [Phys. Rev. Lett. 85, 334 (2000)] suggested that the liquid–liquid critical point lies between the melting curves
of ice III and ice V. We explore this conjecture using molecular dynamics simulations with a machine learning model based on ab initio
quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII and find that all of them are supercritical
and do not intersect the liquid–liquid transition locus. We also find a pronounced, yet continuous, change in the slope of the melting lines
upon crossing of the liquid locus of maximum compressibility. Finally, we analyze the literature in light of our findings and conclude that
the scenario in which the melting curves are supercritical is favored by the most recent computational and experimental evidence. Although
the preponderance of evidence is consistent with the existence of a second critical point in water, the behavior of ice polymorph melting lines
does not provide strong evidence in support of this viewpoint, according to our calculations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159288

I. INTRODUCTION

Water continues to be the focus of intense scientific inquiry,
not only because of its importance in the biological and physi-
cal sciences but also on account of its distinctive thermophysical
properties and phase behavior. Water exhibits at least 17 different
crystalline phases (with new ones continuing to be uncovered),1,2

multiple glassy states,3 and possibly also a liquid–liquid phase transi-
tion (LLT) between high-density liquid and low-density liquid (HDL
and LDL, respectively) under supercooled conditions.4,5 As such,
water provides a rich proving ground to stretch our understand-
ing of diverse thermophysical phenomena, including complex phase
equilibria, metastable phase transitions, and glass physics,6 as well as
the possible relationships between them.7,8

The possibility of an LLT in water has been the focus of
numerous studies,5 and a preponderance of both experimental and

computational evidence points to the existence of water’s LLT at
positive pressures (P) and supercooled temperatures (T) (i.e., below
the melting T of the stable ice I phase).9–15 However, there remain
many unresolved questions around the LLT and its relationship
to water’s properties and various solid phases. A set of observa-
tions instrumental to the development of the argument in favor of
the LLT came about when Mishima and Stanley characterized the
melting of various ice polymorphs to liquid water upon decompres-
sion at different T.16,17 They observed that the melting curve of ice
III exhibited a notable but continuous change in slope in the T–P
plane, while ice V and ice IV exhibited sharp and seemingly dis-
continuous changes in slope. Recall that, by the Clausius–Clapeyron
equation,18

dP
dT
=

ΔH
TmΔV

. (1)
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Here, the slope dP/dT of a line of phase coexistence Tm(P) is related
to the change in enthalpy ΔH and volume ΔV across the transition.
This idea suggests that if a melting curve exhibits a discontinuous
change in slope, it correspondingly reflects a discontinuous change
in the properties of ice and/or liquid water at that point. Given that
the enthalpy and volume of crystalline solids are only weakly depen-
dent on T and P, Mishima and Stanley concluded that the properties
of the liquid phase were changing discontinuously (i.e., evidence of
an LLT). This argument, if correct, would place the liquid–liquid
critical point (LLCP) somewhere in between the ice V and ice III
melting lines, with the LLT coexistence line intersecting the ice V
and ice IV melting curves at the point of discontinuous change in
slope. Mishima also probed the melting lines of ices VI and XIII but
was unable to extend those curves far enough to intersect with the
possible LLT line.

This rationalization for the observed trends, while plausi-
ble, remains difficult to definitively explore experimentally due to
rapid crystallization of the stable ice I phase upon melting of the
other polymorphs. Similar practical challenges also hamper the
direct experimental demonstration of the LLT. Thus, open ques-
tions remain about the true relationship between a possible LLT
and the metastable melting of the ice phases. Molecular model-
ing represents an attractive route to probe these ideas, as one can
design simulation methodologies free from unwanted crystalliza-
tion, which allows us to directly study the relationship between the
LLT and the various ices. In parallel, advances in machine learning
(ML)-based interaction potentials19,20 allow us to develop predictive
intermolecular potential models that describe water’s interactions
at the level of an ab initio reference calculation [e.g., density func-
tional theory (DFT)], thus enabling purely predictive simulations of
complex collective properties and phase behavior at tractable com-
putational cost.21–26 In this study, we coupled one such ML-potential
method [Deep Potential Molecular Dynamics (DPMD)]27,28 with

several advanced simulation techniques to shed further light on the
possible relationship between the LLT and water’s liquid–solid phase
behavior.

II. POTENTIAL SCENARIOS
Before describing the details of our approach and results, we

schematically illustrate the possible classes of behavior in Fig. 1.
In this discussion, we assume the existence of an LLT. The ele-
ments that we consider in our analysis are the melting curve of
an ice polymorph, the liquid–liquid critical point, the liquid–liquid
coexistence line (or binodal), and the Widom line. The Widom
line can be regarded as an extension of the liquid–liquid coexis-
tence line to supercritical conditions and is defined by the locus
of maxima of the correlation length. Response functions, such as
the heat capacity at constant pressure CP and the isothermal com-
pressibility κT , also have pronounced maxima under supercritical
conditions even far from the critical point, and the values of the
response functions diverge as the critical point is approached.29

Furthermore, the lines of maxima of the response functions in
the T–P plane asymptotically converge to the Widom line as
the critical point is approached from supercritical conditions.29

CP = (∂H/∂T)P and κT = −(1/V)(∂V/∂P)T are derivatives of the
enthalpy H and volume V , and thus, we expect the fastest change in
these liquid-state properties in the immediate vicinity of the Widom
line. In turn, a pronounced change in the enthalpy and volume
of the liquid at the Widom line will lead to correspondingly pro-
nounced changes in the slope of the ice melting line as predicted
by Eq. (1).

We now analyze three possible scenarios. If the melting curve
of a particular polymorph were to be significantly supercritical [Sce-
nario 1, Fig. 1 (left)], the impact of the critical point would be
minimal. Therefore, we would expect to observe a modest change

FIG. 1. Hypothetical scenarios describing the possible relationship between the ice polymorph melting curves and the LLT. The upper plots show the melting curve of a
hypothetical ice polymorph (red solid line), the LLT line (gray solid line), the LLCP (gray circle), and the Widom line (gray dashed line). The lower plots show the hypothetical
free energy surfaces for the liquid density along the melting curves at the three points marked by+ signs. Scenario 1 (left) shows a case where the melting curve is significantly
supercritical, Scenario 2 (center) shows a case where the melting curve is slightly supercritical, and Scenario 3 (right) shows a case where the melting curve is subcritical.
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in the slope of the melting curve and the free energy surface (FES)
of the liquid state would have a single basin that smoothly moves
from high to low density as temperature decreases along the melting
curve. If the melting curve passed near to the critical point but still
under supercritical conditions [Scenario 2, Fig. 1 (center)], a more
significant but still continuous change in slope might be observed
as the liquid properties change swiftly but continuously upon cross-
ing the Widom line. In this case, the free energy surfaces would still
only show one single minimum at a given state point, yet they can
show significant asymmetry14 and broadening at the intersection of
the melting curve with the Widom line. The broadening of the free
energy surface of the liquid as a function of density at the Widom
line follows from the fact that density fluctuations σρ are related to κT

via σ2
ρ = ρ2kBTκT/V , where ρ is the density and kB is the Boltzmann

constant.30 Finally, if the melting curve was subcritical [Scenario 3,
Fig. 1 (right)], a discontinuous change in liquid properties across the
LLT would result in a discontinuous change in the slope of the melt-
ing curve, and a free energy surface with two basins of equal depth
would develop at the point of liquid–liquid phase coexistence (i.e.,
where the ice melting line meets the LLT line). Moving forward,

we will situate our simulation results in the context of these three
potential scenarios.

III. CALCULATION OF MELTING CURVES
Our molecular dynamics simulations were driven by a deep

potential model27 of water developed by Zhang et al.23 The model
has carefully been trained to reproduce with high fidelity the poten-
tial energy surface of water based on density functional theory
(DFT) calculations with the Strongly Constrained and Appropri-
ately Normed (SCAN) exchange and correlation functional.31 SCAN
is one of the best semilocal functionals available and describes
with good accuracy many properties of water and ice, and their
anomalies.24,32,33 Even though the model is short-ranged with a
cutoff of 6 Å, it can capture subtle physical effects, such as polariza-
tion26 and many-body correlations27 (see Ref. 34 for an alternative
point of view). Furthermore, this model qualitatively describes the
behavior of water and ice polymorphs in a region of the phase dia-
gram spanning temperatures 0–500 K and pressures 0–50 GPa.23

It is thus suitable to represent ices III, IV, V, VI, and XIII under

FIG. 2. Overview of the methodology to calculate the melting curves of ice polymorphs. The procedure is illustrated using the case of ice III. (a) Number of ice III-like molecules
as a function of time in the biased coexistence simulations at various T and P. The colors of the curves correspond to the T , as labeled to the right of the figure. The empty
plots denote that no simulations were run at that (T , P). The range (324–378) that is reversibly sampled corresponds to one layer of ice III. (b) Free energy surfaces as a
function of the number of ice III-like molecules, where the dashed line is a linear fit to the free energy surface and the shaded region denotes the uncertainty. The colors
match the same T reported in panel (a). (c) Chemical potential difference between ice III and liquid at various T and P. The gray dashed line is a linear fit to the data, and
the shaded region represents one standard deviation of uncertainty in the fit parameters. (d) Melting curve obtained by this procedure, where the blue points represent the
T and P of zero chemical potential difference between ice and liquid obtained in panel (c). The error bars represent one standard deviation errors in the fit parameters as
shown in (c). The dashed line is the melting curve obtained from the integration of the Clausius–Clapeyron equation. (e) and (f) Simulation snapshots illustrating ice III and
the molecular environments used to generate the order parameter36,37 to drive the biased coexistence (e) and the ice III–liquid coexistence geometry (f).
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the conditions of interest for this work. Another aspect of criti-
cal importance is whether the model has a liquid–liquid transition
under deeply supercooled conditions. We have recently proved
rigorously using free energy calculations that this model has a
liquid–liquid transition with a critical point at Tc = 242 ± 5 K and
Pc = 0.295 ± 0.015 GPa.14 It is important to note that SCAN also
has limitations. Largely due to the self-interaction error in semilocal
functionals,35 the strength of the hydrogen bond is overestimated,
resulting in an upward displacement of melting temperatures of
about 40 K with respect to experiments.24 In addition, the solid
polymorphs ice III and ice XV are incorrectly predicted by SCAN
to be metastable at all (T, P).23 However, given the complex-
ity of water’s phase diagram, SCAN predicts the relative location
of the various phase boundaries to be in good agreement with
experiments.23

Herein, we computed the melting lines of the ice polymorphs
in two stages. In the first stage, we calculated a few points along the
liquid–solid coexistence lines using a biased coexistence approach37

in which we simulate a particular ice polymorph and liquid water in
direct coexistence [Fig. 2(f)] and use a bias potential to reversibly
crystallize and melt a layer of solid [Fig. 2(a)]. This approach
was used in a recent study to calculate the phase diagram of the
state-of-the-art empirical model of water TIP4P/Ice38 and can be
regarded as a generalization of the interface pinning approach.39

From biased coexistence simulations carried out at different tem-
peratures and pressures, we extract the difference in chemical
potential between the liquid and ice from the slope of the free
energy surfaces37,39 [Fig. 2(b)] and locate the liquid–ice coexis-
tence temperature at a given pressure as the temperature at which
this difference is zero [Figs. 2(c) and 2(d)]. We applied this pro-
cedure to ices III, IV, V, and XIII to obtain a few coexistence
points for each polymorph. See Fig. 2 for an overview of this pro-
cedure for the case of ice III. We show the results for ices IV,
V, and XIII in the supplementary material. We also validated the
coexistence points obtained via the biased coexistence method for
ices IV and V using standard direct-coexistence simulations (see
the supplementary material). We subsequently obtained continuous
and smooth coexistence lines by integrating the Clausius–Clapeyron
equation as first proposed by Kofke.40 This technique is based on
the numerical integration of Eq. (1) using the enthalpy and volume
obtained from constant temperature and pressure simulations of
each phase (see Sec. VII and the supplementary material for further
details).

IV. RESULTS
Using the techniques described above, we calculated the coex-

istence points and lines shown in Fig. 3(a) for ices III, IV, V,
and XIII. The circles and error bars correspond to biased coex-
istence simulations, and the lines were computed by integrating
the Clausius–Clapeyron equation. We also show in Fig. 3(a) the
data for the liquid–liquid critical point, liquid–liquid coexistence
line, and Widom line that have recently been reported by us.14

According to these calculations, the melting curves of all ice poly-
morphs as predicted by the SCAN functional are supercritical, i.e.,
they pass above the liquid–liquid critical point. The melting line
of ice VI is also supercritical and is shown in the supplementary
material. Thus, all of them intersect the Widom line rather than

the LLT line. Our simulations result in melting curves that show
a pronounced, yet continuous, change in slope upon crossing the
Widom line. This behavior is compatible with the expected change
in the properties of liquid water from HDL-like to LDL-like as
the Widom line is traversed from high to low pressures. More-
over, the change in slope is smoother for ice III than for the other
polymorphs, consistent with an increasingly abrupt change in the
properties of the liquid closer to the critical point. The smoother
change in the slope of the melting curve of ice III resembles the
behavior hypothesized in Scenario 1 described in Fig. 1, while the
more abrupt change shown by ices V, IV, and XIII is reminiscent of
Scenario 2.

Our results also show good agreement between the biased coex-
istence simulations and the integration of the Clausius–Clapeyron
equation in the HDL-like region. Meanwhile, it was not possible
to perform biased coexistence simulations in the LDL-like region
due to the long relaxation times of the LDL-like liquid under those
thermodynamic conditions. Indeed, even for the comparatively
less expensive bulk liquid simulations for the Clausius–Clapeyron
integration procedure, we needed long simulations (100 ns) of
the bulk liquid in the LDL-like region for robust statistical
certainty.

The analysis of the melting curves shown in Fig. 3(a) does not
constitute a proof of a continuous change in slope since the curves
are obtained from a set of points interpolated with a spline, which
is by construction smooth and differentiable. In order to provide
evidence for the continuous change in slope, we now analyze in
detail the properties of liquid water along the melting curves of ice
polymorphs. In Fig. 4, we show the enthalpy and density of liq-
uid water as a function of pressure. Both properties exhibit a swift
change upon crossing of the Widom line, and the change is more
abrupt as the melting curves approach the critical point, with the
sequence ice III→ ice V→ ice IV→ ice XIII. We ruled out that this
behavior is a result of ice crystallization by analyzing configurations
at regular intervals of 5 ps. We calculated the structural finger-
prints Chill+44 and Identify Diamond Structure,45 as implemented
in Ovito,46 and we did not find atomic environments compatible
with ice I in any of our simulations. We also show in Fig. 4 the
free energy surfaces (FESs) as a function of the liquid water den-
sity for selected points along the coexistence lines. The FESs of the
liquid along the melting curves of all studied ice polymorphs show
a behavior reminiscent of Scenario 2 of Fig. 1. For all ices, the FES
at the state point closest to the Widom line shows clear broaden-
ing. Furthermore, the FES in the vicinity of the Widom line exhibits
deviations from a quadratic form with significant asymmetry and
a shoulder suggestive of the metastable free energy minimum that
would appear below the critical point. Taken together, this behavior
provides strong evidence of a continuous crossover from HDL-like
to LDL-like liquids as the melting curves of ices III, V, IV, and XIII
are traversed toward lower pressures. We remark that none of the
melting lines analyzed here have properties of the liquid compatible
with subcritical Scenario 3 of Fig. 1 that would lead to a discontinu-
ous change in the slope of the melting line. Based on the analysis of
the liquid properties described above, we conclude that the changes
in the slope of the melting curves shown in Fig. 3 are, indeed,
continuous.

We have so far focused on the properties of the liquid phase.
However, according to Eq. (1), the properties of ice can also affect
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FIG. 3. Melting curves of ice polymorphs III, IV, V, and XIII and their location relative to the liquid–liquid critical point. (a) Results obtained using a machine learning model
based on the SCAN DFT functional. The circles represent the melting points calculated using biased coexistence simulations,37 the crosses were obtained by integrating
the Clausius–Clapeyron equation, and the lines are spline interpolations of the latter results. We also show the location of the critical point, the liquid–liquid coexistence line,
and the Widom line (line of maxima of κT ) as calculated in our previous work.14 (b) Melting curves reported by Mishima17 for heavy water based on decompression-induced
melting experiments. The approximate location of the discontinuous change in the slope of the melting curves of ices IV and V is marked with an X. The shaded region is the
location of the critical point estimated by Bachler et al.41 We also show the location of the critical point obtained by Shi and Tanaka using experimental measurements,42 by
Debenedetti et al. using molecular simulations with the empirical water models TIP4P/2005 and TIP4P/Ice,12 and by Mishima and Sumita43 using an extrapolation based on
polynomial fits to the equation of state data. On the left, we show atomic configurations representative of ices III, IV, V, and XIII.

FIG. 4. Properties of liquid water along the melting curves of several ice polymorphs. Panels (a)–(d) correspond to ices III, V, IV, and XIII, respectively. For each ice
polymorph, we show the enthalpy of liquid water HL, the density of liquid water ρL, and the melting temperature T as a function of pressure P. The locus of maxima of
isothermal compressibility14 is shown in the T–P plane with a dashed line. We also show the free energy surfaces F as a function of the density of liquid water ρL. The free
energy surfaces are color-coded to match the color of points along the T vs P coexistence line to specify the thermodynamic conditions under which they were calculated.
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FIG. 5. Melting curve of ice V (blue) calculated with the TIP4P/Ice semiempirical
water model. The crosses were obtained by integrating the Clausius–Clapeyron
equation, and the line is a spline interpolation. The location of the critical point
for this model is based on Ref. 12. The liquid–liquid binodal and Widom line were
obtained from a fit of the density and energy to a two-state equation of state.15

the slope of the melting curves. In the supplementary material, we
show the change in enthalpy and density of ice polymorphs along
the melting lines. The data show that the changes experienced by the
bulk ice polymorphs are much more subtle than the corresponding
changes in the properties of the liquid phase. In the pressure range
shown in Fig. 4, the densities of ice polymorphs change by less than
1%, while the density of liquid water changes by 10%. Furthermore,
the enthalpy of ices varies by around 8%, while the enthalpy of liquid
water has a significantly larger variation of around 17%. This analy-
sis indicates that the changes in the properties of the liquid phase
are the main factor driving the sharp changes in slope observed
in Fig. 3.

The results described above correspond to a purely predic-
tive model derived from first-principles calculations. An alternative
approach is to evaluate the melting lines of ice polymorphs using
semiempirical water models that are fit to experimental informa-
tion. For this reason, we calculated the melting line of ice V in the
TIP4P/Ice model,38 which is a state-of-the-art semiempirical model
for the study of ice polymorphs. The location of the liquid–liquid
critical point for this model has accurately been determined by
Debenedetti et al.12 We find that the melting curve of ice V within
the TIP4P/Ice model (shown in Fig. 5) is also supercritical, in agree-
ment with the SCAN calculations reported above. Further compu-
tational details of the simulations carried out using the TIP4P/Ice
water model are provided in the supplementary material.

V. DISCUSSION
The picture that emerges from our present results is in contrast

to Mishima and Stanley’s interpretation.16,17 As described above,
Mishima’s interpretation of the experiments considers that the melt-
ing curve of ice III is supercritical, and the melting lines of ices
IV, V, and XIII are subcritical.17 Meanwhile, our calculations based
on an ab initio model predict the supercritical behavior for all the
studied ice polymorphs. To evaluate this discrepancy, we analyze
the consistency of each of these two interpretations in light of the
most recent evidence for the location of the critical point. The
decompression-induced melting curves measured by Mishima17 are

shown in Fig. 3(b) together with recent estimates of the location of
the liquid–liquid critical point. The estimates include an extrapola-
tion by Bachler et al. based on experimental data for the high- and
low-density spinodals obtained from compression/decompression
experiments on glassy water,41 an analysis by Shi and Tanaka using
experimental measurements,42 calculations based on molecular sim-
ulations with the two realistic empirical water models TIP4P/Ice
and TIP4P/2005,12 and a very recent extrapolation based on poly-
nomial fits to equation of state data by Mishima and Sumita.43 It
follows from Fig. 3(b) that, if such estimates are correct, all melting
curves would be supercritical in experiments. Furthermore, the rel-
ative positions of the ice polymorph melting curves and the critical
point provided by SCAN in Fig. 3(a) seems to be in excellent qual-
itative agreement with the experimental results shown in Fig. 3(b),
i.e., the relative stability of all phases is captured qualitatively. How-
ever, the quantitative positions of the melting curves and critical
point in the T–P plane differ significantly from experiments, which
we attribute to the known limitations of SCAN.21,24 We note that
it is possible that SCAN somehow shifts the location of the critical
point relative to the ice melting curves; however, given the qualita-
tive correspondence between Figs. 3(a) and 3(b), we do not expect
this to be the case. Moreover, the calculations described above based
on a semiempirical model also show that the melting line of ice V
is supercritical, in disagreement with the original interpretation of
the experiments and supporting the picture provided by the SCAN
functional.

We note that some of the estimates for the location of the
LLCP reported in Fig. 3(b) are based on water models that do not
quantitatively reproduce the magnitude of the compressibility and
specific heat maxima of liquid water at 1 bar. Thus, it is possi-
ble that these models predict a location of the LLCP that is not
in agreement with the temperature and pressure where the experi-
mental LLCP may be located. However, this discrepancy would not
necessarily imply that the water models will fail to predict the rel-
ative position between the critical point and the melting lines of
polymorphs.

In Fig. 3(b), we have combined the experimental melting curves
for heavy water17 with estimates of the critical point based on exper-
iments carried out using light water41,42 and simulations that ignore
nuclear quantum effects.12 A figure equivalent to Fig. 3(b), replacing
the melting curves of heavy water ice polymorphs with the melting
curves of light water ices,47 is shown in the supplementary material.
The isotopic effect in the melting lines is rather small, with melting
temperatures of heavy water around 5 K higher than those of light
water.47 Meanwhile, the isotopic effect on the location of the critical
point has recently been estimated by Eltareb et al.48 using path inte-
gral molecular dynamics and a semiempirical model of water. They
found a critical point location for heavy water 18 K and 9 MPa higher
than for light water. The combined isotopic effect on the melting
curves and the location of the critical point may lead to a relative
shift of around 12 K in light water compared to heavy water. There-
fore, isotopic effects are unlikely to affect the picture shown in Fig. 3.
We also stress that our simulation results shown in Fig. 3(a) ignore
nuclear quantum effects. They are thus more representative of heavy
water than light water.

The discrepancy between our simulation results and Mishima’s
experiments leads to the question of why a sharp discontinuity in
slope was observed in the experimental melting curves for ice V and
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ice IV. Such a behavior could perhaps be explained by immediate
crystallization of ice I rather than melting to a metastable (relaxed)
liquid state, which, of course, is not an issue in the simulations due to
the separation of time scales of ice nucleation and liquid-like equili-
bration/relaxation. In this context, it should be noted that Mishima’s
hypothesized liquid–liquid phase transition is located very close
to the homogeneous nucleation locus. Furthermore, the behavior
reported by Mishima for the melting curves past the hypothesized
LLT17 is remarkably noisy on the low-pressure side. Experimental
studies explicitly targeted toward this issue are needed to definitively
evaluate this hypothesis.

VI. CONCLUSIONS
Our results suggest that experiments reported by Mishima

and Stanley that pointed to the existence of a liquid–liquid criti-
cal point at ∼0.1 GPa and ∼220 K,16 and subcritical melting curves
for ices IV, V, and XIII,17 might call for a different interpretation.
While our first-principles calculations do support the existence of
a liquid–liquid critical point,14 they suggest its location to occur at
lower temperatures than had been hitherto assumed such that the
melting curves of ices III, IV, V, VI, and XIII are, in reality, super-
critical. The relative stability of phases reported here is in excellent
agreement with experiments, yet from a quantitative point of view,
our simulations are limited by the accuracy of our chosen semilo-
cal DFT functional. Future work could test our findings using more
sophisticated DFT functionals or higher levels of electronic struc-
ture theory. Considering the plethora of known ice polymorphs
and the ones that continue to be discovered and characterized,49

the search for ices with subcritical melting curves may be a fruitful
endeavor. We also hope that our work will stimulate further exper-
imental efforts to elucidate the behavior of melting curves in the
vicinity of the liquid–liquid critical point and definitively explain
the discrepancies between the experimental and computational
results.

VII. METHODS
A. Molecular dynamics simulations

We performed molecular dynamics simulations with the
engine Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)50,51 augmented by DeePMD-kit.27,28,52 In all simula-
tions, we used a time step for the integration of the equations of
motion of 0.5 fs and the mass of hydrogen was set to 2 amu so
as to allow a longer integration step. We maintained a constant
temperature using the stochastic velocity rescaling algorithm53 with
a relaxation time of 0.1 ps. We used a Parrinello–Rahman54 type
barostat with a relaxation time of 1 ps for pressure control.

B. Integration of the Clausius–Clapeyron equation
We employed system sizes of 192, 324, 1024, 336, 640, and

336 molecules for bulk water, ice III, ice IV, ice V, ice VI, and
ice XIII, respectively. We obtained configurations with realistic
proton disorder for all ice polymorphs using GenIce.55 For the
bulk liquid, we used an isotropic barostat, while for all ice poly-
morphs, we employed a fully anisotropic barostat. We integrated
Eq. (1) numerically using a fourth-order Runge–Kutta algorithm.

The starting point for the integration and other computational
details are described in the supplementary material. The relax-
ation time of liquid water increases dramatically for thermodynamic
conditions below the Widom line, and we meticulously checked
for adequate convergence of the average enthalpy and volume by
performing relatively long simulations of up to 100 ns per state
point.

C. Biased coexistence simulations
We used system sizes of 648, 256, 672, and 672 water molecules

for ices III, IV, V, and XIII, respectively. The system size for ice
IV is smaller than for other ices because the orthogonalized cell
available in GenIce for ice IV contained 128 molecules. For this
reason, one must choose between a simulation box of 256 or 2048
molecules for ice IV coexistence simulations. Due to the smaller
system size used for ice IV, we also performed simulations at one
pressure using a much larger system of 2048 water molecules. The
calculated finite-size effect amounted to a 7 K increase in the melt-
ing temperature of the small system relative to that of the large
system (see the supplementary material). Therefore, the melting
temperatures reported herein for the small ice IV system were
correspondingly decreased by 7 K to take into account finite-
size effects. Based on the results of Ref. 24, we expect finite-size
effects in the melting curves of other polymorphs to be around
2 K, which is similar to the statistical uncertainty in the calcula-
tion. We ensured that both the liquid and ice were subject to the
desired pressure by fixing the box dimensions parallel to the inter-
face to the equilibrium value for the crystal and applying a barostat
to the perpendicular direction. We constructed the bias potential
for the biased coexistence simulation using the On-the-fly Prob-
ability Enhanced Sampling (OPES) method56 as implemented in
PLUMED.57 The bias potential was a function of collective vari-
ables tailored to target each polymorph following Bore et al.37 The
collective variables represent the number of molecules with an ice-
like environment and are based on a measure of similarity between
environments in the target crystal structure and in the simulation
box as described by Piaggi and Parrinello.58 In Fig. 2(e), we show
the environments employed in the definition of the collective vari-
able for ice III. We used a uniform multiumbrella distribution56

for OPES with a lower bound N ln and an upper bound N l(n + 1),
where N l is the number of atoms in a layer and n is an integer. In
this way, the growth and melting of a full layer of ice are sampled
reversibly. Further details of this methodology can be found in the
supplementary material and Ref. 37.

SUPPLEMENTARY MATERIAL

The supplementary material contains further information
about the simulation methods and additional data to support the
conclusions reported here.
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