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ABSTRACT
The hypothesis that the anomalous behavior of liquid water is related to the existence of a second critical point in deeply supercooled
states has long been the subject of intense debate. Recent, sophisticated experiments designed to observe the transformation between the
two subcritical liquids on nano- and microsecond time scales, along with demanding numerical simulations based on classical (rigid) mod-
els parameterized to reproduce thermodynamic properties of water, have provided support to this hypothesis. A stronger numerical proof
requires demonstrating that the critical point, which occurs at temperatures and pressures far from those at which the models were optimized,
is robust with respect to model parameterization, specifically with respect to incorporating additional physical effects. Here, we show that a
liquid–liquid critical point can be rigorously located also in the WAIL model of water [Pinnick et al., J. Chem. Phys. 137, 014510 (2012)],
a model parameterized using ab initio calculations only. The model incorporates two features not present in many previously studied water
models: It is both flexible and polarizable, properties which can significantly influence the phase behavior of water. The observation of the
critical point in a model in which the water–water interaction is estimated using only quantum ab initio calculations provides strong sup-
port to the viewpoint according to which the existence of two distinct liquids is a robust feature in the free energy landscape of supercooled
water.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099520

I. INTRODUCTION

The possibility of multiple critical points in a one-component
system is a fascinating topic permeating atomic,1–4 molecular,5,6

and colloidal science.7–9 The presence of a second critical point in
addition to the usual liquid–gas critical point indicates that distinct
disordered liquid phases exist, differing in their properties at both
the microscopic and macroscopic levels. Under suitable pressure (p)
and temperature (T) conditions, the two liquids coexist. The fact
that water, the most abundant liquid on the Earth’s surface, might
display such an unconventional behavior in deeply supercooled
states6 contributes to the relevance of this hypothesis.

The liquid–liquid transition (LLT) hypothesis explains water’s
anomalies as the effects of a liquid–liquid critical point (LLCP)
found in the deeply supercooled liquid at elevated pressures. On
cooling below the critical temperature at sufficiently high pres-
sures, liquid water undergoes a first-order phase separation into
low-density liquids (LDLs) and high-density liquids (HDLs), both
still metastable with respect to crystalline ice. A liquid–liquid crit-
ical point indeed influences a large region of the phase diagram,10

inducing a critical p and T dependence in several response functions
(compressibility, specific heat, thermal expansivity) and explaining
in an elegant framework the well-known thermodynamic anomalies
of water.11–13 Similarly, the existence of distinct liquid states suggests
the existence of corresponding, structurally distinct water glasses,
consistent with the observed phenomenon of polyamorphism.14–16

Recent sophisticated pump-and-probe experiments17 have provided
strong evidence that a suitably prepared high-density disordered liq-
uid water, under deeply supercooled conditions, transforms into
a structurally distinct and less dense liquid state before freezing
into ice.

Numerical studies have played an important role in the devel-
opment of the idea that a single-component system can organize
itself into more than one disordered phase, particularly when those
phases are metastable liquids. Compared to experiments, numeri-
cal studies are based on truly clean samples and, due to the use
of periodic boundary conditions, can easily be conducted without
confining interfaces and as such are not affected by heterogeneous
nucleation. In addition, they provide access to the short time scales
in which the liquid has sufficient time to equilibrate in a metastable
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sense, but not for homogeneous nucleation of the stable phase to
occur.

Despite these positive aspects, numerical studies have a few
major drawbacks. The sluggish dynamics associated with critical
points require extensive computational resources and, more impor-
tantly, the approximations of reality inherent in the choice of the
water–water interaction potential unavoidably make simulations
an approximate tool for studying real systems of interest. It is,
thus, important to verify whether the recent results18 demonstrating
the existence of critical fluctuations in classical rigid water models
designed to reproduce selected experimental results19,20 stand up
when the model does not result from a fit to selected experimen-
tal data but is instead designed by incorporating ab initio quantum
mechanical calculations of water’s potential energy surface.

A preliminary step in this direction has been recently provided
by combining density functional theory (DFT), machine learning,
and molecular simulations, exploiting the power of a deep neu-
ral network model to represent the DFT ab initio potential energy
surface of water.21 This state-of-the-art study reported strong evi-
dence of the existence of two distinct liquid states but could not
provide a rigorous proof of the liquid–liquid critical point due
to the heavy numerical load required to explore low-temperature
states.

With the aim of demonstrating the existence of a liquid–liquid
critical point using models that are not fitted to experimental
data but rather obtained from the underlying electronic structure
potential energy surface, we investigate here the WAIL model.22

WAIL is a flexible, four-site model with a negatively charged
site located between two OH bonds and positive charges on the
hydrogen sites.22,23 The location of the negative site is a lin-
ear combination of the OH vectors. Bond flexibility is modeled
via a fourth-order stretching expansion and a harmonic H–O–H
term. Intermolecular interactions are modeled via a combina-
tion of Buckingham O–O term, point charge Coulombic contri-
butions, and a repulsive term between hydrogen atoms in one
molecule and the negatively charged site on another molecule.
Model parameters were obtained via the adaptive force matching
method22 by fitting to post-Hartree–Fock quality forces obtained
from quantum mechanics/molecular mechanics (QM/MM) calcu-
lations rather than empirically reproducing selected thermophysical
properties. WAIL also predicts radial distribution functions (RDFs)
and heats of vaporization for both ice and liquid in good agree-
ment with experiments. Unlike previously investigated classical
models based on rigid molecules, the WAIL model incorporates
polarizability via a negatively charged site and allows for stretch-
ing and bending of the hydrogen bonds, a significant increase
in the complexity of the modeling of the water–water interaction
potential.22,23

Evidence consistent with a liquid–liquid transition in a region
of temperature and pressure currently accessible to extensive
numerical studies has been reported for this model,24 making it
a good candidate for rigorously demonstrating, for the first time,
critical behavior in a model parameterized only on ab initio calcula-
tions.25 In this work, we demonstrate the presence of a LLCP in the
first-principles WAIL model and rigorously locate it, strengthening
the description of water’s anomalies as radiating out from a criti-
cal point in the deeply supercooled liquid, below which two distinct
liquid forms exist.

II. METHODS

Long correlation times are a defining feature of systems near
critical points, and low temperatures cause sluggish dynamics. Simu-
lations near the critical point are, therefore, computationally expen-
sive. To minimize the number of long exploratory simulations in
the relative vicinity of the critical point, a two-state equation of
state10,26,27 (TSEOS) approach was first used to provide an estimate
of the location of the liquid–liquid critical point of the WAIL model.
This estimate allowed for more rigorous, but more computationally
intensive, investigations of criticality carried out in a more targeted
manner.

A. Two-state equation of state
The TSEOS10,26,27 models a substance as a mixture of two dis-

tinct but interconvertible components A and B and expresses the
Gibbs free energy G of the system as the following function of
temperature, pressure, and the fraction of molecules in the B local
configuration x:

G = GA + xGBA +Gmix, (1)

GA = RTc∑j,kcjk(ΔT̂ )j(Δp̂)k, (2)

GBA = RTλ(ΔT̂ + aΔp̂ + b(ΔT̂)(Δp̂)), (3)

Gmix = RT(x ln x + (1 − x) ln(1 − x) + 2 + ω0Δp̂
T/Tc

x(1 − x)). (4)

Here, GA represents the Gibbs free energy of structure A, GBA is the
Gibbs free energy difference between structures B and A, and Gmix is
the free energy change due to mixing. The fit parameters are a, b, λ,
ω0, and cjk, where j and k go from 0 to 4. The reduced pressure Δp̂
is defined as p−pc

pc
and the reduced temperature ΔT̂ as T−Tc

Tc
. Further

details on the fitting procedure can be found in Appendix A. The
TSEOS was fitted to the observed density and energy per particle
and predicted a critical point at pc = 356 bar and Tc = 208.5 K. The
results of the fit are shown in Fig. 1; the best fit parameters are given
in Table III.

The thermodynamic properties of the system can be calculated
from the TSEOS as derivatives of G; see Appendix A for details.
Only positive pressures were considered in fitting the TSEOS to
minimize the influence of the liquid–vapor spinodal, which could be
accounted for explicitly in more advanced versions of the TSEOS.26

The good fit obtained without consideration of the liquid–vapor
spinodal suggests that it would not have played an important role
in the positive-pressure–low-temperature region of interest in this
work.

The two-state model assumes the existence of a critical point;
the changing fraction of molecules in the B local environment,
here identified with low-density configurations, is the main driver
of changing physical properties upon approaching the critical
point.27,28 The low-density fraction (x) is calculated explicitly in the
TSEOS, as shown in Fig. 1. The correspondence between high x at
low temperatures and pressures and the falling density of the liquid
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FIG. 1. TSEOS fit to simulation data, rescaled to H2O. (a) Density along isobars
from MTMB data and (b) along isochores. Isobars in (a) range from 100 (blue)
to 800 bar (red) with a spacing of 50 bar; crossing of isochores [inset, (b)] is a
signature of criticality. (c) Equilibrium fraction of molecules with a low-density local
environment, as predicted by the TSEOS model, with isochores from 100 to 800
bar as in (a). At low temperatures and pressures, the TSEOS predicts that WAIL
shifts to a liquid composed primarily of low-density structures, producing a density
maximum and related anomalies. (d) Energy (kinetic + potential) along isochores.

upon cooling is apparent. This equation of state captures many of
the thermodynamic anomalies associated with water, for example,
progressively sharper compressibility extrema on pressurization, as
shown in Fig. 4 in Appendix A.

B. MD simulations for the TSEOS
The TSEOS was fit to density and energy data along iso-

chores and isobars, as shown in Fig. 1. Initial configurations were
generated by steepest-descent energy minimization followed by an
equilibration period of 100 ns; the simulation box contained 256
molecules. Isobar data spaced every 50 bar and 5 K were gener-
ated for use in the TSEOS fitting procedure using the on-the-fly
probability enhanced sampling (OPES) technique29 applied in the
multithermal–multibaric (MTMB) ensemble within the variation-
ally enhanced sampling module in PLUMED.30–32 Additional details
on this procedure are provided in Appendix B. Pressures sampled
in the OPES simulation ranged from −200 to 800 bars and tem-
peratures from 215 to 350 K; note that the pressure range explored
with OPES was greater than that used to parameterize the TSEOS.
On-the-fly probability enhanced sampling (OPES) provides a more
computationally efficient way to sample a large region of phase space
by introducing a biasing potential B(U, V) to ensure that the sys-
tem fully explores the relevant energies and densities.29 The biasing
potential is dynamically updated as the system explores the phase
space; estimates of observables generated in this way are valid once
the biasing potential (and hence their values) converges. This simu-
lation was run for 475 ns—an order of magnitude longer than was
required for the biasing potential to converge but much shorter than
was required for direct observation of low- and high-density states
near the critical point.

Isochore data were generated using replica-exchange molecu-
lar dynamics with an exchange move attempted every 500 steps.33

Water was modeled as D2O by increasing the weight of the hydro-
gen atoms by 1.0 AMU; the potential was not otherwise modified
to consider nuclear quantum effects.22 The heavier deuterium atoms
served purely to allow for a longer simulation time step. All results,
however, have been appropriately rescaled to reflect the molecular
weight of H2O and are presented in this rescaled form throughout
this work.

C. Rigorous critical point estimation
Critical points in fluids with short-range interactions and

described by a scalar order parameter are known to belong to the
3D Ising universality class.34 Because of the absence of hole–particle
symmetry, the relevant order parameter for fluids is a linear com-
bination of density and energy M = ρ

ρ0
+ s E

E0
, where E is the energy

per molecule, s is the so-called field-mixing parameter and ρ0 and
E0 are characteristic density and energy scales, making M dimen-
sionless.35 One then seeks, numerically, for the combination of
temperature Tc, pressure pc, and s that best fits the universal Ising
distribution of the magnetization at the critical point,36 using a
rescaled M with zero mean and unit variance as the fluid order
parameter.35 The statistics of energy and density fluctuations at dif-
ferent thermodynamic conditions (T, p) are obtained from numer-
ical data using the histogram reweighting method.37 The details of
the histogram reweighting procedure are described below and in
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Appendix C and the procedure for locating the critical point from
the reweighted data is provided in Appendix D.

Simulations close to the critical point were equilibrated for one
microsecond and run for 2–12 μs using standard molecular dynam-
ics in the NPT ensemble. Joint histograms of total energy and density
were then generated and used to estimate the density of states in this
region using the weighted histogram analysis method.37–39 Further
details on this technique are provided in Appendix C. The approx-
imation of the density of states obtained from multiple-histogram
analysis was then reweighted to predict the observed energy and
density at nearby conditions, including the critical point itself. The
critical point was identified by varying the reweighted temperature
and pressure and the field-mixing parameter s to best reproduce
the critical Ising distribution.36 This process was repeated for three
distinct system sizes (N = 300, 512, 1000 molecules) to assess any
finite-size effect on the location of the critical point; such effects
have been known to arise from the interaction of diverging length
scales associated with criticality and the short length scales imposed
by the simulation box size.40 Details of the simulation trajectories
used are given in Appendix E and the fitting procedure is described
in Appendix D.

D. Details of the molecular dynamics simulations
All simulations aimed at collecting near-critical density and

energy histograms were performed with Gromacs 5.1.4.41–46 Water
was modeled as D2O using the WAIL potential with a time step of
1 fs and a cutoff of 1 nm for van der Waals interactions and short-
range Coulomb electrostatic interactions.22,24 Long-range electro-
statics were incorporated using the Particle-Mesh Ewald (PME)
method with a cutoff distance of 0.9 nm and fourth-order interpola-
tion. Temperature coupling was performed using the Nosé–Hoover
thermostat47,48 with τT = 8.011 ps. Pressure coupling was incor-
porated with the Parrinello–Rahman barostat49 using τp = 18.3 ps
and a compressibility of 4.5 × 10−5 bar−1, as have previously been
used to examine the LLCP in water using Gromacs.18 Here, as
there, non-integer time constants were chosen to minimize the pos-
sibility of resonance between the time scale of the barostat and
that of the thermostat. All simulations used periodic boundary
conditions.

III. RESULTS AND DISCUSSION
Before proceeding with a rigorous analysis of the critical

fluctuations, the TSEOS was fit to thermodynamic data of the
WAIL model at relevant temperatures and pressures.50 In this
approach, the Gibbs free energy is written as the mole fraction-
weighted sum of the free energy of the molecules in the two
different local environments—the low-density–low-energy environ-
ment (B) and in the high-density–high-energy one (A) previ-
ously discussed—weighted, respectively, with composition x and
1 − x and supplemented by a mean-field mixing contribution
Gmix, which incorporates a non-ideality term, as described in the
Sec. II.

Figure 1 compares the equation of state in the ρ − T (a) and
p − T (b) planes resulting from MD simulations with the best
fit based on the two-state mean-field free energy expression in
Eqs. (1)–(4), previously used to model TIP4P/2005.27 Figure 1(d)
provides an analogous comparison for the energy. The quality of

the fit is remarkable and the estimated critical temperature and
pressure are in good agreement with the results obtained by com-
parison to the critical Ising distribution, calculated as described in
Appendix D. The TSEOS results vividly demonstrate how water’s
anomalous properties, such as the compressibility maxima and
the density maxima along isobars, ultimately radiate out from the
LLCP.51

Close to a critical point, the structure of the system is charac-
terized by long-wavelength fluctuations.52 In fluids, at fixed T and p,
this results in spatial fluctuations in both energy and density. Fol-
lowing a well-established procedure,35 we estimate the fluctuations

FIG. 2. Fluctuations at 380 bar and 210 K, rescaled to H2O, near the critical
point for a system with N = 1000. Density (a) and potential energy (b) fluctuations
show bimodality and long correlation times. (c) Joint energy–density histogram
calculated from the same trajectory highlighting the bimodality and the positive
correlation between density and potential energy.
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of an appropriately normalized order parameter (a linear combina-
tion of density ρ and potential energy per particle E) searching for
p and T values where the known bimodal distribution typical of the
Ising universality class at a critical point is observed.35 An example
of the evolution in time of the density and the energy is shown in
Fig. 2, together with the distribution probability in the E, ρ plane for
T = 210 K and p = 380 bar.

Both quantities fluctuate in a correlated way, showing clear
bimodality, with a correlation time of the order of microseconds.
On this time scale, the system flips between low- and high-density
and low- and high energy states. This bimodality, once again, is
indicative of an approaching phase transition and an associated first-
order coexistence curve between two liquids: one characterized by
low energy and low density and the other characterized by high
energy and high density.11,12 We note that an order parameter of
the form t ≡ ρ + sE (where s is the so-called field-mixing parameter)
rather than ρ or E alone is needed to recover Ising-like behavior, as
discussed in the Sec. II.35

As described in detail in Appendix C, we calculate the density
of states Ω(E, ρ) by combining several energy–density histograms at
conditions expected to be near the critical point using the weighted
histogram analysis method.37,38 The fluctuations observed in several
μs-long runs differing in T and p are, thus, expected to be represen-
tative of the structures of importance to the critical point.18,53,54 The
density of states is then used to predict the observed distributions of
energy and density at arbitrary (T, p), provided they are sufficiently
close to the sampled range.

This predicted energy–density histogram is then used to gen-
erate a histogram of the order parameter t and compared with the
universal distribution of the fluctuations characteristic of the Ising

FIG. 3. Optimization of (pc , Tc , s) produces a good fit to the Ising curve for
each system size examined. N = 512 is shifted up by 0.1; N = 1000 is shifted up
by 0.2. The order parameter M is the linear combination of density and energy
ρ
ρ0
+ s E

E0
rescaled to unit variance and zero mean. Here, ρ0 = 1 kg m−3 and

E0 = 1 kJ mol−1. Lines represent the universal 3D Ising distribution;36 points are
reweighted simulation data.

TABLE I. Best fit critical point parameters for the WAIL model.

System Tc (K) pc (bar) ρc (kg m−3) s

N = 300 210.2 ± 3 357 ± 26 1001 ± 45 94 ± 78
N = 512 210.6 ± 2 369 ± 21 981 ± 50 83 ± 66
N = 1000 210.7 ± 2 368 ± 18 1006 ± 37 79 ± 43

universality class, resulting in a best fit estimate of the critical tem-
perature Tc, critical pressure pc, and critical density ρc. The results of
these fits for the three different system sizes considered here are pre-
sented in Fig. 3 and in Table I; this fitting procedure also produces
an estimate for the field-mixing parameter s. An accurate numeri-
cal representation of the 3D critical Ising distribution36 was obtained
for system sizes of N = 300, 512, and 1000 molecules, with the condi-
tions producing the best fit to the Ising curve taken to be the location
of the critical point.

Notably, the observed critical temperatures are all within 0.3 K
of 210.5 K and within 8 bar of 365 bar. In light of this weak
system-size dependence, no attempt is made at explicitly determin-
ing the dependence of Tc and pc on the system size. Interestingly,
the WAIL model predicts a LLCP at a much lower pressure than
all previously studied water models and in closer agreement with
estimates based on experimental data55 and with the theoretical
work of Holten et al.56 This critical temperature and pressure are
also located near the 205 K, 500 bar estimate previously pub-
lished for WAIL on the basis of enhanced fluctuations in this
region.24

Identification of the critical point in this manner provides
unambiguous proof that the WAIL model, with flexible bonds
reminiscent of those in real water, shows an LLCP. Previously,
this had only been proven in classical water models with rigid
bonds. Evidence suggesting an LLT in WAIL had previously been
obtained, but the critical point had not been rigorously located.24

Table II lists the liquid–liquid critical temperature and pressure for
a number of water models. Of these, only TIP4P/2005, TIP4P/Ice,
and WAIL have rigorously located critical points; the locations of
the critical points in the other models have been estimated using
phenomenological models such as the two-state equation of state
only.

TABLE II. Critical parameters obtained in previous water model studies.a

Model Tc (K) pc (bar)

TIP4P/200518 172 1861
TIP4P/Ice18 188.6 1725
E3B357 180 2100
iAMOEBA58 184 1750
DeePMD21 224 2687
ST259 237 1670
WAILb 210.5 365
aItalics denote approximate calculations (e.g., TSEOS fits).
bThis work.
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IV. CONCLUSION
In summary, we have robustly demonstrated that the free

energy of the WAIL model—a model which incorporates flexibil-
ity and polarizability and is based only on quantum mechanical
calculations—is characterized by two liquid phases separated by
a first-order line ending in a critical point at pc = 365 bar and
Tc = 210.5 K. Thus, the validity of the thermodynamic scenario orig-
inally proposed to describe the behavior of supercooled water on
the basis of a numerical study of the historical ST2 model6 and
recently confirmed in a study of two realistic classical rigid water
models TIP4P/2005 and TIP4P/Ice18 is significantly reinforced by
the present results. Finally, we emphasize that all other previously
investigated models for which the critical point has been unam-
biguously determined locate the critical point at significantly higher
pressure (about 1800 bar or above)6,18 than the current WAIL pre-
dictions. Such a difference in critical pressure not only highlights
the important role played by molecular flexibility and polarizabil-
ity but also brings numerical predictions closer to the most recent
experimentally based estimates.60–62

Further work should consider the use of models incorporating
other important behaviors found in real water, in particular, nuclear
quantum effects. Examination of the crystallization of ice in this
region—as the main reason for the lack of experimental data on real
water—also merits further investigation.
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APPENDIX A: TSEOS FIT RESULTS

The two-state model was fit to the total energy per particle and
density of the system at given pressure and temperature, as shown
in the main text. These quantities were calculated numerically as
derivatives of the Gibbs free energy predicted by the equation of state
as follows:

V = (∂G
∂p
)

T
, (A1)

E = G − T(∂G
∂T
)

p
− p(∂G

∂p
)

T
. (A2)

The coefficients of the TSEOS were optimized using the
Nelder–Mead algorithm in Scipy,63 and the final results are
provided in Table III.

The expected thermodynamic anomalies of water, such as a
density maximum and sharp divergence of the response functions,

TABLE III. Optimized TSEOS parameters.

Parameter Value

Tc (K) 208.5
pc (bar) 356.3
λ 1.795
a 7.88 × 10−2

b −6.94 × 10−2

ω0 5.10 × 10−2

c00 −27.9
c01 3.00 × 10−1

c02 2.20 × 10−3

c11 7.54 × 10−2

c20 −6.62
c12 1.22 × 10−2

c21 2.01 × 10−2

c30 2.10
c22 1.03 × 10−2

c31 1.17 × 10−2

c40 −49.5 × 10−1

c23 7.54 × 10−2

c32 9.82 × 10−4

c33 −8.92 × 10−4
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FIG. 4. Temperature dependence of the compressibility along isobars, as predicted
by the TSEOS.

are clearly visible in the TSEOS predictions. Sharp increases in the
isothermal compressibility, for example, can be seen in Fig. 4.

APPENDIX B: MULTITHERMAL–MULTIBARIC
SAMPLING

The multithermal–multibaric ensemble was implemented as
the TD_MULTITHERMAL_MULTIBARIC distribution in the
variationally-enhanced sampling (VES) module within Plumed.30–32

Gromacs was patched with Plumed version 2.631,32 and a simula-
tion of 256 molecules was run for 475 ns on a temperature range
from 215 to 350 K and a pressure range from −200 to 800 bar, with a
nominal temperature of 300 K and a nominal pressure of 200 bar.21

The energy–volume space thus sampled is shown in Fig. 5. Note that
only positive pressures were used to parameterize the TSEOS; the

FIG. 5. Conditions sampled by OPES in the multithermal–multibaric ensemble,
with the most recent shown in yellow. Note that virtually the entire state space
used was sampled by the end of the simulation. Densities rescaled to H2O.

FIG. 6. Potential energies at selected (T , p) conditions, computed over a given
trajectory length. Note that all predictions have converged by 100 ns.

inclusion of a wider range of pressures in the MTMB calculations
was done to ensure good sampling at all pressures considered in the
TSEOS.

The Q6 order parameter was used to detect ice; a potential wall
was used to prevent the system from sampling configurations with
average Q664 greater than 0.125 to avoid ice. This potential wall
was implemented with the Plumed UPPER_WALLS command32

with ki = 20 000 and ai = 0.125.21 Convergence of the simulation was
determined by monitoring the convergence of the calculated poten-
tial energy at several points throughout the (p, T) regime of interest,
as shown in Fig. 6.

The multithermal–multibaric scheme calculates the value of an
observable O at a reweighted temperature and pressure (T′, p′) by
weighted averaging observed values at the nominal conditions (T, p)
and weights w for each observed configuration R,

⟨O(R, V)⟩T′ ,p′ =
⟨O(R, V)w(R; V)⟩T,P

⟨w(R, V)⟩T,P
. (B1)

The weighting function is calculated from a biasing potential
B(U, V) biasing the potential energy and volume of the system.30 It
is generated dynamically by OPES.29

The weight function w, where β = 1/kBT, was calculated from
the bias potential as

w(R) = e(β−β′)U(R)+(βp−β′p′)V(R)eβB(U(R),V). (B2)

APPENDIX C: HISTOGRAM REWEIGHTING

Histogram reweighting uses the partition function of the sys-
tem to predict its behavior at arbitrary conditions provided from
its behavior under one set of conditions. In the NPT ensemble, the
relevant partition function is

J. Chem. Phys. 157, 024502 (2022); doi: 10.1063/5.0099520 157, 024502-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Z(p, β) =∑
V
∑

E
Ω(V , E)e−β(E+pV). (C1)

Here, the partition function Z(p, β) is defined in terms of the density
of states Ω(V , E), where β = 1/kBT and T is the system temperature,
p its pressure, V its volume, and E its potential energy. This corre-
sponds to the following probability distribution function P(V , E) of
energy and volume at a given pressure and temperature:

P(V , E; p, β) = Ω(V , E)e−β(E+pV)

Z(p, β) . (C2)

For a given simulation trajectory i, an approximation of the
partition function can be constructed as follows:

Z(pi, βi) =∑
V
∑

E
Ω(V , E)e−βi(E+piV) = e−βiG(pi ,βi). (C3)

In the NPT simulations used here, pressure and temperature are held
constant and energies and densities can be calculated for a given
configuration. The density of states Ω(E, V) requires additional
information on the frequency at which configurations correspond-
ing to a given energy and density appear in the simulation trajectory.
By approximating P(V , E; p, β) as the normalized histogram of the
observed energy and volume fluctuations H(E,V ;p,β)

Nobs
at temperature

T and pressure p, the density of states can be calculated. Here, the
histogram value H(E, V ; p, β) is defined as the number of configura-
tions observed with densities and energies falling into the histogram
bin containing energy E and volume V ; 200 histogram bins each in
density and energy were used here. This histogram is normalized by
the total number of configurations Nobs considered. Here, configu-
rations were taken every 40 ps in the trajectory after an equilibration
period of 400 ns. For a given trajectory i, this becomes

Ωi(E, V) = Hi(E, V)
Ni

eβi(E+piV)e−βiG(pi ,βi). (C4)

To arrive at a single consensus for the density of states Ω(E, V) for
the system, each run is assigned a weight factor ωi ≥ 0 such that
∑i ωi = 1. Ω(E, V) can then be expressed as the following linear
combination of the weighted histograms:

Ω(E, V) =∑
i

ωiΩi(E, V) =∑
i

ωi
Hi(E, V)

Ni
eβi(E+piV)e−βiG(pi ,βi). (C5)

Minimizing the variance of Ω(E, V) produces coupled equations
that must be solved self-consistently, enabling an optimal Ω(E, V)
to be identified, allowing P(V , E; p, β) to be calculated at arbitrary
conditions. This is identically the joint density–energy distribution
that is needed for identification of a critical point,37–39

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ω(E, V) = ∑iHi(E, V)
∑iNieβi(E+piV)e−βiG(pi ,βi) ,

e−βiG(pi ,βi) =∑V∑EΩ(E, V)e−βi(E+piV).
(C6)

TABLE IV. Trajectory specifications, N = 300.

Pressure (bar) Temperature (K) Length (μs)

1 220 3.0
100 205 2.1
100 210 2.9
100 220 1.1
200 205 2.1
200 210 2.4
300 220 1.4
400 205 2.3
400 210 2.1
500 205 1.1
500 210 0.7
500 220 0.5
600 205 1.4

APPENDIX D: ISING CURVE FITTING

The probability density of the magnetization of a critical Ising
ferromagnet is a characteristic of any critical point belonging to the
Ising universality class, including liquid–liquid and liquid–gas criti-
cal points.34 The 3D Ising curve at the critical point can be accurately
approximated as the following continuous function:36

P(M) = Ae
−( M2

M2
0
−1)

2

(a M2

M2
0
−c)

2

, (D1)

where a = 0.158, c = 0.776, M0 = 1.134 165 5, and the normaliza-
tion constant A = 1132.487. Here, the value of the constant M0 was
chosen to give the distribution unit variance.

For a fluid critical point such as an LLCP, a suitable order para-
meter is a linear combination of density and (per particle) energy:
t = ρ + sE, where s is not known a priori. Choosing an arbitrary

TABLE V. Trajectory specifications, N = 512.

Pressure (bar) Temperature (K) Length (μs)

300 205 2.0
350 205 2.1
400 205 2.1
450 205 2.0
300 210 10.1
350 210 11.5
375 210 5.0
400 210 11.3
450 210 9.8
150 215 2.8
200 215 2.8
250 215 2.3
300 215 4.7
350 215 4.7
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TABLE VI. Trajectory specifications, N = 1000.

Pressure (bar) Temperature (K) Length (μs)

150 215 1.2
200 215 1.2
335 210 5.2
335 215 2.7
335 220 2.4
350 210 5.2
350 215 2.7
350 220 2.3
365 210 7.6
365 215 2.7
365 220 1.7
380 210 5.6
380 215 2.7
380 220 1.6
395 210 4.5
395 215 1.9
410 210 3.0

initial value of s, the scale of M is chosen so that it has zero mean
and unit variance,

M = t − ⟨t⟩
σt

. (D2)

Here, ⟨t⟩ represents the arithmetic mean and σt the standard devia-
tion of t = ρ + sE. The values of T, p, and s were optimized using the
MINUIT optimization code.65

APPENDIX E: TRAJECTORIES USED

Molecular dynamics trajectories at the following conditions
were used to rigorously locate the critical point. Simulations with
300 molecules are described in Table IV, simulations with 512
molecules in Table V, and those with 1000 molecules in Table VI.
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