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Limmer and Chandler’s (LC) calculations for the ST2
model of water1,2 show evidence of only a single metastable
liquid at conditions where other studies3–6 report a liquid-
liquid transition (LLT). Although the reversible nature of ST2’s
LLT has been recently demonstrated,7,8 the origin of the dis-
agreement with LC’s calculations remains unresolved. Here,
we show that the simulation code made available to us by
LC implements a hybrid Monte Carlo (HMC) sampling pro-
tocol that is inappropriate for rigid polyatomic water models.
The resulting sampling errors significantly distort ST2’s equa-
tion of state and hence have prevented LC1,2 from accurately
characterizing the model’s phase behavior.

Average potential energies computed for ST2 along an
ambient pressure isobar with LC’s HMC code (Fig. 1) devi-
ate significantly from the values obtained from our publicly
available HMC code9 and a molecular dynamics (MD) code
for ST2 generously provided to us by the authors of Ref. 10.
These systematic errors are caused by LC’s use of a veloc-
ity initialization routine that is inappropriate for rigid water
models. The correct equation of state for ST2 is recovered
when we simply correct LC’s velocity initialization routine
(Fig. 1).

LC’s HMC sampling scheme1,2 uses short microcanon-
ical MD trajectories as trial MC moves and the standard
HMC acceptance criterion:11 Pold→new

acc = min(1, e−β∆Ue−β∆K ),
where β = (kBT )−1 and ∆U = Unew

� Uold and
∆K = Knew

� Kold are the changes in potential and
kinetic energy, respectively. For N rigid water molecules,
K ≡ 1

2

∑
i[mi(vcm

i · vcm
i ) + ωT

i Iiωi] for i ∈ N, where mi is
the molecular mass, vcm

i is the center of mass velocity, ωi is
the angular velocity, and Ii is the inertia tensor. Although this
expression is invariant to the choice of reference frame, rigid
body kinematics are conveniently formulated using the angu-
lar velocity ω̂i in the body-centered frame where the inertia
tensor is a diagonal matrix Îi. Hence we adopt this reference
frame for our analysis.
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The assignment of initial center-of-mass and angular
velocities, vcm,0

i and ω̂0
i , at the start of every MD trial move

is incorrect in the LC code: the generated velocity distribu-
tions deviate from Maxwell-Boltzmann (MB) statistics and
violate equipartitioning of K. Consequently, LC’s velocity
initialization routine generates artificially low rotational tem-
peratures and artificially high translational temperatures that
are both significantly different from the expected (nominal)
temperature (Fig. 1). The underlying error, as explained in the
supplementary material, is a violation of the rigidity of the ST2
molecules. Although the initial distribution of K generated by
LC’s velocity initialization scheme obeys canonical statistics
at the expected temperature, the energy is incorrectly parti-
tioned between the molecular degrees of freedom; accordingly,
our unambiguous tests show that LC’s HMC scheme produced
large sampling errors (Fig. 1) and fails numerical consistency
checks (see the supplementary material).

We correct LC’s code by implementing a routine that
draws initial velocities (vcm,0

i , ω̂0
i ) from the MB distribution

at the beginning of each MD trial move (Fig. 1), as is a com-
mon practice.11,12 This procedure ensures that equipartition is
satisfied and that the rotational and translational degrees of
freedom are initialized at the desired temperature. When these
conditions are met, the sampling errors vanish and the correct
equation of state for ST2 is recovered (Fig. 1).

LC’s code predicts potential energies for ST2 that are too
large (Fig. 1), as if sampling is being performed at artificially
high temperatures. By extrapolating the data from their orig-
inal code (Fig. 1, left) and aligning the predicted potential
energy to the temperature corresponding to the correct equa-
tion of state for ST2, we estimate that LC’s HMC algorithm
samples at effectively ca. 285 K when the set temperature is
230 K. This discrepancy is consistent with our previous analy-
sis, which showed that LC’s free energy (FE) calculations for
ST2 underpredict the melting temperature of ice Ic by 30–45 K
at 2.6 kbar.7 Both analyses therefore suggest that LC’s code
samples at artificially high temperatures, which has prevented
observation of ST2’s LLT in their studies.1,2 Indeed, when we
perform FE calculations with LC’s original code, only a sin-
gle liquid basin (e.g., Fig. 2, left) is observed over the range
of conditions relevant to ST2’s LLT,5,6 regardless of sampling
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FIG. 1. (Left) Potential energies for ST2 with vacuum Ewald boundary conditions (ST2b2) at 1 bar computed using LC’s HMC code (red diamonds) deviate
significantly from the values generated from our HMC code (green squares) and the MD code provided by Ni and Skinner (black circles). Excellent agreement is
achieved when we correct LC’s velocity initialization scheme (blue triangles). (Right) Distributions of the x-components of the initial center-of-mass translational
velocity vcm,0

i (top) and initial body-frame angular velocity ω̂0
i (bottom) at 300 K from LC’s code (red circles) deviate significantly from the Maxwell-Boltzmann

(MB) distribution (green line) and violate equipartition (the translational and rotational temperatures are ca. 597 K and 3 K, respectively). Velocities from the
corrected code (blue circles, indistinguishable from the green line) obey MB statistics. This violation of equipartition is repeated at the start of every MD trial
move in the LC code. Velocities are in units of MB std. deviation at 300 K.

FIG. 2. Free energy surfaces for ST2 with conducting Ewald boundary condi-
tions (ST2a2) computed at 230 K and 2.8 kbar for 216 molecules using LC’s
original code (left) and the version that we corrected (right). Contours are
1 kBT apart and uncertainties are 1 kBT.

duration. Hence FE surfaces consistent with LC’s published
results1,2 are obtained using the code supplied by them to
us, a code that does not correctly predict ST2’s equation of
state (Fig. 1). When sampling is performed with the version
of LC’s code that we corrected, however, the system quickly
relaxes to a state with two liquid basins (Fig. 2, right). This
observation is consistent with FE studies7,8 which have shown,
using advanced techniques to sample for orders of magnitude
longer than we have done here,7 that ST2’s LLT is invariant to

sampling duration and distinct from the normal freezing tran-
sition. Further, it shows that LC’s contrary assertions arise
from a conceptual mistake in their code that leads to sampling
errors.

See supplementary material for the error in LC’s velocity
initialization routine and additional consistency checks that
have been performed.
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