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Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry
density ρS . The signature of this tensile limit is a minimum in the landscape equation of state, the
pressure–density relationship of inherent structures sampled along a liquid isotherm. Our previous
work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revis-
ited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of
state with system size for particles with interactions typical of molecular liquids indicates the presence
of an athermal first-order phase transition between homogeneous and fractured inherent structures,
the latter containing several large voids. Here, we study how this tensile limit manifests itself for
different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently
strong cohesion display an athermal first-order phase transition, consistent with our prior character-
ization. Weak cohesion also displays a tensile instability. However, the landscape equation of state
for this regime is independent of system size, suggesting the absence of a first-order phase transition.
An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems
is associated with the emergence of a highly interconnected network of small voids. While strongly
cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at
ρS in the thermodynamic limit, this interconnected network develops gradually, starting at ρS , even
at infinite system size. Published by AIP Publishing. https://doi.org/10.1063/1.5019274

I. INTRODUCTION

While a substantial portion of the physics of dense sim-
ple liquids is well described by a system of particles with
exclusively repulsive interactions,1,2 such systems do not have
distinct liquid and vapor phases. Rather, they exhibit a single
fluid phase that can undergo isothermal decompression with-
out the occurrence of a phase transition. Systems composed
of particles with attractive interactions, when decompressed
along a subcritical isotherm, will cavitate at sufficiently low
densities, and the pressure will abruptly jump to the coex-
istence pressure. Such differences also appear to translate
to a particle systems’ athermal phase behavior. Two means
of considering such behavior are sampling through athermal
expansion or by producing an ensemble of energy-minimized
configurations, often called inherent structures,3–5 from a liq-
uid sampled along an isotherm. Specifically, particles with
and without cohesive interactions exhibit rather distinct land-
scape equations of state, defined as the pressure–density (P–ρ)
relationship of the inherent structures.

Particles with exclusively repulsive interactions have
a landscape equation of state which decreases monotoni-
cally upon decompression. Sufficient decompression results
in energy-minimized structures where all the particles can
distance themselves beyond the assigned range of mutual

a)Author to whom correspondence should be addressed: pdebene@
princeton.edu

interaction. At this density and below, the pressure and
potential energy are zero. The density where the pressure
becomes zero is often called the jamming threshold and
serves as the focal point of the jamming scenario for granular
materials.6–10

Particles with attractive interactions will exhibit what has
been called Sastry behavior.11 Upon decompression, the inher-
ent structures of attractive particle systems will begin to exhibit
isotropic tension (i.e., negative pressure) yet still maintain spa-
tial homogeneity. Further decompression will produce greater
tensions until reaching a mechanical instability at the Sastry
point, which is defined by the corresponding limiting negative
pressure PS and density ρS . Below ρS , the inherent structures
relieve tension upon decompression. The tensile instability at
ρS is due to cavitation in the inherent structures. We note that
when sampling along a liquid isotherm, cavitation in the liquid
can be well separated from cavitation in the energy landscape.
In other words, a liquid configuration that appears homoge-
neous can have an inherent structure that is inhomogeneous due
to cavitation. For finite systems, the landscape equation of state
is akin to a mean-field liquid isotherm passing through a spin-
odal, a feature that has been observed for a variety of attractive
particle systems.12–21 The Sastry point was therefore inter-
preted as a spinodal-like point that separates homogeneous
and cavitated inherent structures.11,22

We recently revisited the phenomenology of Sastry behav-
ior for a binary Lennard-Jones mixture and found that it
was subject to considerable finite-size effects.23 While the
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landscape equation of state appears to contain a spinodal-like
point at small system sizes, it becomes a discontinuous point
in the thermodynamic limit. This discontinuity at ρS is the
result of an abrupt transition in the liquid. Just above ρS , the
liquid samples basins of attraction with minima that are homo-
geneous and under significant tension. Just below, the liquid
exclusively samples basins with fractured inherent structures
at much reduced tension. This dependence of the landscape
equation of state upon system size is analogous to finite-size
rounding of the thermal liquid/bubble transition.24–27 We per-
formed a finite-size scaling analysis that suggests that the
finite-system size deviation of the characteristic density for this
athermal transition scales with 1/N1/3, where N is the number
of particles. Rather than a spinodal-like point, Sastry behavior
for molecular liquids is more akin to an athermal first-order
phase transition.

There appear to be two types of limiting mechanical
behavior in the energy landscape, depending on the presence
of attractive interactions. Particles with exclusively repul-
sive interactions, typical of granular systems, have a jam-
ming threshold, above which the mechanically stable packings
develop a yield stress.9 Particles with strong attractive inter-
actions, typical of molecular liquids, have a Sastry density,
above which the inherent structures are homogeneous and
below which they are fractured. The present work addresses
the limiting mechanical behavior of amorphous materials for
intermediate strengths of cohesion, between the two limits
delineated above. Particles with such intermediate interac-
tions include colloids, proteins, and buckyballs,28,29 which can
exhibit vapor/liquid phase behavior that is metastable with
respect to fluid/crystal coexistence, a result of their short-
ranged attractive interactions. A corollary to this work is that
it also addresses whether jamming is unique to repulsive par-
ticles or instead more general to some classes of cohesive
particles.

In this paper, we study the mechanical limits of inher-
ent structures produced along liquid isotherms as a function of
cohesive strength among the particles. Specifically, we study a
binary mixture interacting via a (7, 6) Lennard-Jones potential
(described in Sec. II) and vary the cutoff as a means of adjust-
ing cohesive strength. In Sec. III, we show that for cohesive
strengths above certain threshold, the landscape equation of
state exhibits a response to system size that is consistent with
the athermal cavitation transition we previously presented.23

Section IV shows that particles with sufficiently weak cohe-
sion still have a tensile instability in their landscape equation of
state. However, their response to system size is weak or entirely
absent, suggesting the absence of a first-order phase transition.
The evolution of the pressure distribution upon crossing ρS

suggests that for strong cohesion failure in the energy land-
scape is sudden, while systems composed of sufficiently weak
particles fail gradually. Section V analyzes the size and con-
nectivity of voids formed in the two distinct cohesive regimes.
Strong cohesion results in the formation of several large voids.
Yielding for weak cohesion is associated with the emergence of
a small number of small voids that grow in number and become
highly interconnected upon further decompression. Section VI
contains concluding remarks as well as suggestions for further
study.

II. METHODS
A. Interaction potential

We employ a recently introduced30 generalized (n, 6)
Lennard-Jones pair potential

φ (r) = 4ε

[
λ
(
σ

r

)n
− α

(
σ

r

)6
]

. (1)

The coefficients λ and α are defined as

λ =
3
2

(
2n/6

n − 6

)
, α =

n
2(n − 6)

(2)

and are designed such that, upon varying n, the location of the
minimum and depth of the well are unchanged with respect
to the values for the standard (12, 6) Lennard-Jones potential
without a cutoff. Our previous work on the Sastry phenomenol-
ogy23 found that the softer (7, 6) variant exhibited clear fea-
tures of a first-order phase transition in the energy landscape
(e.g., a bimodal pressure distribution) at smaller system sizes
than the traditional (12, 6) variant. Thus, we have limited the
scope of this work to focus on the (7, 6) variant.

Here, we employ a cutoff rc with force shifting of the
potential to ensure that both the potential and the force between
two particles is zero at the cutoff and beyond. The force shifted
potential is given by

φfs (r) =



φ (r) − φ (rc) − (r − rc) φ′ (rc) r ≤ rc

0 r > rc




. (3)

Reducing rc has the effect of weakening the strength of the
attractive interactions, as it reduces the well-depth. Below a
certain rc, 1.2828 for the (7, 6) variant, φfs(r) will be exclu-
sively repulsive. To examine how the strength of intermolec-
ular attractions affects yielding in the energy landscape, we
have varied rc between 1.4 and 3.5, specifically considering
rc = 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, and 3.5. Figure 1 plots
φfs(r) for these values of rc.

B. Simulation details

In this work, we study a glass forming system, a binary
50:50 mixture with the Wahnström31 parameters: εAA = 1.0,

FIG. 1. Pair potential for each cutoff rc considered in this work. Changing
rc changes the well depth and the extent of the attractive tail, allowing one to
use rc to tune the strength of particle cohesion.
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σAA = 1.0; εAB = 1.0, σAB = 1.1; εBB = 1.0, σBB = 1.2. We
report results in the traditional reduced units in terms of the
AA interaction parameters.

Molecular dynamics is performed in a cubic simulation
box with periodic boundary conditions in the canonical (NVT)
ensemble at temperature T = 1.0. Time integration is performed
via the velocity Verlet algorithm with molecular dynam-
ics time step of 0.002 with the LAMMPS32 software pack-
age. Simulations performed at fixed temperature employ a
Nosé-Hoover thermostat.33,34 Inherent structures are gener-
ated through energy minimization at fixed density using the
Polak and Ribiere35 method of conjugate gradients. Mini-
mization was considered complete if the relative change in
energy per iteration was less than 10�8. All images of simula-
tion configurations are rendered in Visual Molecular Dynamics
(VMD).36

C. Generating inherent structures in systems
with finite-ranged interactions

The conventional representation of particle systems in
terms of the topography of their potential energy landscapes
identifies inherent structures and their surrounding basins in a
way that leads to an enumeration of those configurational fea-
tures rising exponentially with system size.37 However, intro-
duction of a numerically simplifying assumption that potential
energy contributions vanish identically beyond a finite cutoff
distance rc creates a conceptual ambiguity for inherent struc-
tures. Fortunately, this ambiguity has negligible effect for the
densities used in the calculations reported in this paper. Nev-
ertheless, at a very low density, the conjugate-gradient process
applied to the potential energy landscape with a cutoff rc would
typically terminate at a configuration containing isolated sin-
gle particles and/or isolated small clusters that are beyond the
range of attractions to the remaining set of particles. In terms
of the potential energy landscape itself, this involves continu-
ous configurational subsets along which the system’s potential
energy is precisely constant. Any point within such regions of
the landscape can serve as a termination of the conjugate gra-
dient minimization process. If such termination configurations
were to be defined as “inherent structures,” they would be infi-
nite in number for finite N and would “reside” in vanishingly
small basins.

However, it should be noted that a definition of proper
inherent structures as true local minima even in such low-
density, cutoff-interaction situations can be implemented.
In particular, this involves defining all points along an rc-
generated constant-potential configuration subset as being part
of the basin belonging to the nearest mechanically stable
potential energy minimum (i.e., the nearest conventional inher-
ent structure). Thus, the respective portions of the constant-
potential configuration subsets contribute to the anharmonic
vibrational properties of their containing basins.

D. Void properties calculation

To study the void space in the inherent structures, we
employ an algorithm based on Dong and Blunt’s38 modified
maximal ball algorithm.39 In this method, voids are identified
by finding a set of the largest spheres (i.e., maximal balls) one
can insert into a configuration without contacting any particles.

We briefly describe the algorithm here as applied to a single
configuration, and the reader is directed to Ref. 38 for further
details as well as pictorial representations of the clustering
algorithm.

The configuration is divided into a 3D grid and each point
on the grid is tested for being filled or empty. A grid spacing of
0.2 was chosen to reduce the computational burden while still
giving consistent results with finer spacing. If an A particle can
be inserted at that point without experiencing a repulsive force
from any other particle in the configuration, the point is empty.
Otherwise, it is filled and cannot be the center of a maximal
ball.

Let r0
AA be the separation of the pair potential minimum

between two A particles and r0
AB be the corresponding sepa-

ration for an AB pair. Also, let rA be the distance of a grid
point to the closest A particle and rB be the distance to the
closest B particle. If the grid point is empty, it is assigned a

ball with radius r, where r = min
{
rA −

r0
AA
2 , rB −

r0
AB
2

}
. If for

ball j there exists another ball i such that the distance between
their centers rij ≤ ri � rj, ball j is removed, as it is an inclusion
of ball i. The remaining balls are the set of maximal balls for
this configuration. Two balls i and j are defined as neighbors
if they overlap, provided by the condition rij < ri + rj.

A distinct void is defined as a maximal ball where all
of its neighboring maximal balls having smaller radii and the
void radii we report below are the radii of these distinct voids.
The connectivity of voids is determined through the following
protocol. Starting from a distinct void, say void α, the first
shell of neighboring maximal balls is identified, which are
simply α’s neighbors. The second shell of α identified as all
neighbors of the first shell such that (a) it is not a member of
the first shell and (b) a maximal ball in the second shell has
a neighbor in the first shell with a larger radius. The third-
and higher-order shells are identified in a similar manner until
the search is exhausted, due to maximal balls in the final shell
n having no new neighbors with smaller radii. All maximal
balls in shells 1 to n are then labeled as the member of void
α. This is done for each void. If there is a maximal ball that
is a member of multiple voids, it is called a throat and marks
the connection of at least two voids. The coordination number
of a void is then defined as the number of unique voids with
which it shares a common throat.

III. ATHERMAL FIRST-ORDER PHASE TRANSITIONS
IN THE STRONG COHESION REGIME

In Fig. 2, we present the landscape equation of state 〈PIS〉

and the corresponding average potential energy per particle
〈eIS〉 for rc values of 1.8 and 3.5, for system sizes N = 500;
1000; 2000; 8000; and 20 000. We have also performed the
calculation for N = 100 000 with rc = 1.8. For the present
discussion, this range of cutoffs (i.e., rc ≥ 1.8) constitutes
what we will call the strong cohesion regime.

The behavior of this regime is consistent with our previous
description of a cavitation transition in the energy landscape
of simple cohesive liquids.23 Our previous work23 found that
a Kob-Andersen 80:20 binary mixture40 of both the (7, 6) and
(12, 6) variants of Eq. (1) with rc = 3.5 had landscape equations
of state and 〈eIS〉with a similar response to system size as that



114501-4 Altabet et al. J. Chem. Phys. 148, 114501 (2018)

FIG. 2. Development of the landscape
equation of state and the average poten-
tial energy per particle with system size
for rc = 1.8 and 3.5. This range of cohe-
sive strengths (rc ≥ 1.8) exhibits strong
finite-size affects, indicating the pres-
ence of a cavitation transition in the
energy landscape.

of Fig. 2. While not shown, we observe a similar behavior for
rc = 1.9, 2.0, and 2.5.

A. Development of 〈P IS〉 and 〈eIS〉

This region of strong cohesion gives rise to landscape
equations of state with a system-size response that suggests
the existence of an athermal first-order phase transition. What
appears to be a spinodal-like minimum at small system sizes
develops toward becoming a discontinuous jump with increas-
ing system size. Such a response is analogous to the finite-size
rounding of first-order thermal phase transitions.25–27 At small
system size, the minimum at ρS represents the onset of cav-
itation. At ρS only a few liquid configurations cavitate upon
energy minimization to produce inherent structures with sig-
nificantly lower tension. The remainder are homogeneous and
sustain high tension. As the density is reduced below ρS , the
liquid progressively samples an increasing fraction of broken
inherent structures, until all are fractured. This density range
over which homogeneous and cavitated inherent structures
are sampled is called the crossover region,23 and its exis-
tence results in a smooth landscape equation of state for finite
systems.

As the system size increases, the equation of state below
the density of the minimum becomes steeper, while the width
of the crossover region approaches zero. In the thermody-
namic limit, ρS corresponds to a first-order phase transition
in the energy landscape where the liquid transitions from
sampling exclusively homogeneous to exclusively fractured
inherent structures. The response in the equation of state is a

discontinuous jump from high to low tension. Evidently this
range of cohesive strengths (i.e., rc ≥ 1.8) gives rise to the
same transition in the energy landscape.

Like our previous characterization,23 〈eIS〉 exhibits strong
finite-size effects at densities below ρS . At large enough system
sizes, both cohesive strengths contain a loop, as Fig. 2 clearly
illustrates, with the two extrema delineating the range of the
crossover region. In the thermodynamic limit, these curves
are expected to likewise become discontinuous as the liquid
transitions from exclusively sampling basins of attraction with
minima that are homogeneous to ones that are fractured and
at lower potential energy.

B. Development of the pressure distribution

In our previous work, we found that in a region below
ρS the inherent structure pressure distribution was bimodal,
indicating that the system was sampling a mixture of fractured
(low-tension) and homogeneous (high-tension) inherent struc-
tures. As the liquid is decompressed below ρS , the low tension
peak grows at the expense of the higher-tension one. Once all
configurations cavitate upon minimization, the distribution is
once again unimodal.

Figure 3 shows the development of the pressure distribu-
tions crossing the Sastry density (ρS = 0.630) for rc = 1.8;
N = 100 000. This value of rc marks the lower bound of cut-
offs that still gives rise to the above-described phenomenology.
Above ρS the distribution is narrow and unimodal. As the
liquid is decompressed, the distribution develops a second,
low-tension peak that grows upon further decompression. The



114501-5 Altabet et al. J. Chem. Phys. 148, 114501 (2018)

FIG. 3. Development of the inherent structure pressure distribution cross-
ing the tensile instability at ρS for rc = 1.8; N = 100 000. Below ρS, the
distribution becomes bimodal, as the liquid samples both homogeneous and
fractured inherent structures. At low enough density, all the inherent structures
are fractured, and the pressure distribution is unimodal.

distribution is again unimodal at low enough density. While we
have only shown this development for rc = 1.8, all of the more
cohesive systems we have studied exhibit similar behavior at
sufficiently large system size.

C. Finite-size scaling of the cavitation transition

The fact that for rc = 1.8 the liquid samples two distinct
inherent structure distributions in the crossover region allows
us to perform a finite-size scaling analysis to estimate ρS in
the thermodynamic limit. Like our previous study,23 we detect
the presence of voids by generating instantaneous interface
representations41 of the voids, which provides a set of points
that defines the interface between the compact particle regions
and the voids. Configurations are considered homogeneous if
no interface is found, and fractured otherwise. The fraction
of homogeneous inherent structures f homo at a given ρ is fit
to a sigmoidal curve, and this allows us to estimate ρ1/2, the
density where sampling homogeneous and fractured inherent
structures is equally probable. For finite systems, ρ1/2 is the
nominal location of the phase transition and becomes equal to
ρS in the thermodynamic limit.

Figure 4 suggests that the finite-system size deviation of
ρ1/2 from the N →∞ limit follows a 1/N1/3 scaling law for the
cutoffs in this regime, in agreement with the scaling proposed
in our earlier presentation of this transition.23 We stress again
here that this is an empirical result with no accompanying
theory. Given the similarity in the behavior of the landscape
equation of state and the same scaling relation, it appears that
the same physics applies to this range of cohesive strengths,
supporting the generality of the phenomenon we proposed

FIG. 4. Finite-size scaling of the cavitation transition for cutoffs within the
strong cohesion regime.

earlier.23 A cavitation transition in the energy landscape is
found for rc ≥ 1.8.

D. Differences between cutoffs in the strong
cohesion regime

With the above similarities noted, it is worth pointing
out the differences among the varying cohesive strengths in
this regime. As expected, the tensile strength of the liquid is
reduced upon reducing the cutoff. For lower cutoffs in this
regime, clear indications of a first-order phase transition are
not apparent until appreciably larger system sizes than for
higher cutoffs. For example, for rc = 3.5 with N = 500, there is
a “kink” in 〈PIS〉 at a density below that of the minimum,
which is where the crossover region ends, and the system
exclusively samples the fractured branch. For rc = 1.8, this
signature is not observable until N = 100 000. Thus, it may
be that computational studies of the phase behavior and rhe-
ology of moderately attractive particles require substantially
larger systems than required for simulations of more attractive
liquids.

IV. WEAK COHESION REGIME

Figure 5 presents the landscape equations of state and 〈eIS〉

for rc = 1.4 and 1.7 for N = 500; 1000; 2000; 8000; 20 000,
and 100 000. This range (rc = 1.4-1.7) will be referred to as
weak cohesion. As will now be shown, weaker cohesion dis-
plays qualitatively different behavior than the strong cohesion
regime.

A. Behavior of averages

The landscape equations of state still exhibit minima, indi-
cating the presence of a tensile instability. Though we will
suggest that this tensile instability is different from that of the
strong cohesion regime, we will continue to refer to its location
as the Sastry point. Unlike the strong cohesion regime, 〈eIS〉

does not develop extrema in the neighborhood of ρS . Rather,
ρS appears to coincide with an inflection point in 〈eIS〉.

The most notable difference from the strong cohesion
regime is the minimal effect of finite-sizes, which are in fact
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FIG. 5. Development of the landscape
equation of state and the average poten-
tial energy per particle with system size
for rc = 1.4 and 1.7. This range of cohe-
sive strengths (1.4 ≤ rc ≤ 1.7) exhibits
minimal finite-size effects yet still dis-
plays a tensile instability in the energy
landscape.

entirely absent for rc = 1.4. While rc = 1.7 exhibits finite-size
effects below ρS , the response is rather weak and appears to
be converging with increasing N. In the thermodynamic limit,
the shape of the landscape equation of state remains akin to
a mean-field spinodal rather than a discontinuity. The tensile
instability is not associated with an abrupt phase transition sep-
arating homogeneous and fractured inherent structures. Based
on the landscape equation of state, it appears that the inher-
ent structures start breaking at ρS and become progressively
more broken as tension in the inherent structures is relieved
upon decompression of the liquid. This is opposed to the mix
of homogeneous and fractured inherent structures observed in
the strong cohesion regime at finite sizes.

B. Pressure distributions

Such an interpretation is supported by considering the
pressure distributions. Figure 6 presents the development of
the pressure distributions for rc = 1.7; N = 100 000 as the
system is decompressed below the tensile instability at ρS .
This cutoff represents the most cohesive particles of the weak
cohesion regime, and while not shown, the development of the
pressure distributions for all cutoffs in this regime is akin to
that in Fig. 6.

Unlike the strong cohesion regime, the pressure distri-
bution remains unimodal as the entire peak moves to lower
tensions below ρS . In this case, the peak develops a tail on the
low tension side, and there is a range of densities where the
distribution is much broader. However, at no point is there any

evidence that the liquid samples two distinct types of inher-
ent structure, precluding any attempt to perform a finite-size
scaling analysis. Rather than a discontinuous phase transition,

FIG. 6. Development of the inherent structure pressure distribution crossing
the tensile instability at ρS for rc = 1.7; N = 100 000. Below ρS, the distribution
remains unimodal, and the entire distribution shifts to lower tension.
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the tensile instability for weak cohesion is more continuous in
nature as the inherent structures gradually relieve tension.

V. VOID CHARACTERISTICS: DIFFERENCE
BETWEEN STRONG AND WEAK COHESION

While both cohesive regimes contain tensile instabilities
in the energy landscape, their response to system size is rather
different. Specifically, the strong cohesion regime exhibits
behavior akin to the athermal first-order phase transition we
previously characterized,23 while weak cohesion has a land-
scape equation of state that remains spinodal-like for all system
sizes. To provide a structural basis for this difference, we have
used Dong and Blunt’s38 modified maximal ball algorithm
(described in Sec. II) to analyze how the void space in the
inherent structures develops upon yielding.

A. Void size and multiplicity

Figure 7 shows the average void radius 〈r〉 and average
number of voids per unit volume 〈n̄voids〉 for rc = 1.4 and 3.5,

representing the extremes of cohesion we have considered in
this work. For rc = 3.5, the average pore radius departs from
zero at ρS . Because there are only a few voids immediately
below ρS , it would require many more configurations than
we have produced to converge. Therefore, we only show the
curves of 〈r〉 starting slightly below ρS . For strong cohesion,
the typical radius increases with system size for each density.
An interesting feature is that at large system sizes, 〈r〉 develops
a maximum. Recall that the size shown represents the minor
axis or narrowest dimension of a void. Upon inspection, we
see that somewhat below ρS , larger system sizes exhibit voids
that are more elongated and branched (Fig. 8 right). How-
ever, densities closer to ρS exhibit voids that are approximately
spherical (Fig. 8 left). Such a development is reminiscent of the
sphere to cylinder transition of bubbles seen in finite thermal
systems.24

For rc = 1.4, like the landscape equation of state, 〈r〉
contains no system size effects, and 〈n̄voids〉 is also system
size independent. Evidently for weak cohesion, more voids
of similar size are formed as a result of increasing system

FIG. 7. Average void radius 〈r〉 and
number of voids per unit volume 〈n̄voids〉

for rc = 1.4 and 3.5.

FIG. 8. Instantaneous interface repre-
sentations of the void space that emerges
upon energy minimization in strongly
cohesive (rc = 3.5) systems below ρS.
The image on the left shows a typical
void found just below ρS; it is a large,
compact, and roughly spherical void.
For larger system sizes, the average void
size develops a maximum below ρS,
which is due to the voids becoming
elongated and branched. The image on
the right shows an example of such a
configuration for N = 8000 at ρ = 0.62.
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FIG. 9. Development of the void size
distribution with density for rc = 1.4
and 3.5 as the system is decompressed
below ρS. The left panel displays densi-
ties between 0.30 and 0.43, specifically:
0.30, 0.31, 0.33, 0.35, 0.37, 0.39, 0.40,
0.41, 0.42, and 0.43. The right panel dis-
plays densities between 0.62 and 0.71,
incremented by 0.01.

size, which in turn keeps the tension constant for a given den-
sity. On the other hand, 〈n̄voids〉 scaled by system volume for
rc = 3.5 decreases with system size, indicating that larger
systems accommodate the additional volume by producing
larger rather than more voids. This results in more tension
being relieved as the system size increases at fixed density
below ρS .

Figure 9 shows how the void size distribution develops
below ρS for rc = 1.4 and 3.5. Recall that the size shown rep-
resents the minor axis or narrowest dimension of a void. The
more cohesive particles tend to have large voids narrowly dis-
tributed around the mean. The only exception is at the largest
density shown, where there is also a second peak around 0.6
that disappears upon decompression. Such large voids are con-
sistent with the phase transition in this regime being associated
with catastrophic material failure.

Around the yielding point, the particles with weak cohe-
sion (rc = 1.4) contain small voids, ones that can accom-
modate the insertion of only a single particle. We have also
performed the void analysis for the thermal liquid, and we
observed voids with radii between 0.6 and 0.8. We stress
that this is a result of density fluctuations in the liquid rather

FIG. 10. Coordination number distribution of voids in the liquid and inherent
structure for rc = 1.4 at ρ = 0.31, a density well below ρS. Energy minimization
results in the formation of a highly interconnected network of small voids.
Plotting the joint probability distribution of void size and coordination number
of the inherent structures (inset) results in an “island” at high coordination
number and small radius that is absent in the liquid.

than cavitation, as
(
∂P
∂ρ

)
T
> 0 over the entire density range

considered, implying that some of these voids in the inher-
ent structures are simply the result of density fluctuations in
the liquid. As the density is reduced, this distribution devel-
ops a tail and broadens, as larger voids are produced through
minimization. While this latter feature is not observed in the
liquid, we do not observe separate distributions for voids
already in the liquid and those created upon energy mini-
mization. Thus, simply considering differences in void size
is not sufficient to resolve how yielding occurs upon energy
minimization.

B. Void connectivity associated with yielding
for weakly cohesive particles

In contrast with the above-described behavior, we observe
such resolution between features in the liquid and inherent
structures by considering the connectivity of voids. In fact, as
will be shown below, it appears that yielding in this regime of
weak cohesion is the result of a highly connected network of
small voids that emerges upon energy minimization.

Figure 10 shows the coordination number distribution for
rc = 1.4, N = 1000 at ρ = 0.31, a density well below ρS , for

FIG. 11. The density where the average coordination number departs from
zero (defined as 0.1) versus ρS, the density of tensile instability in the energy
landscape, for cutoffs in the weakly cohesive regime. The coincidence of
these two densities suggests that yielding in the energy landscape of weakly
cohesive systems is due to the formation of a highly interconnected network
of voids. The inset shows an example of the average coordination number
plotted alongside the landscape equation of state for rc = 1.4.
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FIG. 12. Representations of the void
space near and well below ρS for rc =
1.4; N = 1000. The image on the left
at ρ = 0.43 shows that there are many
isolated voids. As the density is reduced
to 0.31 (right image), the voids become
highly interconnected.

both the thermal liquid and the underlying athermal inherent
structures. While the method we have used recognizes voids
in the liquid, they tend to be weakly if at all connected. Energy
minimization results in a bimodal distribution, due to the emer-
gence of a second peak at high coordination number. Producing
the joint probability distribution of void size and coordination
number results in an “island” (inset Fig. 10) at small pore
size and large coordination number that does not exist in the
liquid. Thus, energy minimization below ρS gives rise to a
highly interconnected network of voids that is absent in the
liquid, suggesting that either connectivity or the percolation
of voids is responsible for the athermal tensile instability in
weakly cohesive particles.

To further test this connection between yielding behavior
and void connectivity, we have plotted ρS versus the density
where the average coordination number departs from zero,
defined as crossing 0.1, for all cutoffs and system sizes in
the weak cohesion regime. Figure 11 displays these points
along with the line y = x. All cutoffs in this regime display
yielding precisely at the same density where this network
begins to emerge. The inset shows the average coordination
number and the landscape equation of state for rc = 1.4; N
= 8000 plotted simultaneously. While we do observe voids
above ρS , their average coordination number departs from zero
at the tensile instability. We stress that the development of
this network is gradual for all system sizes. Thus, yielding for
weakly cohesive particles does not behave like a first-order
phase transition with coordination number as the order param-
eter. Rather, ρS is associated with the onset of formation of
a highly connected network of voids, regardless of system
size.

Figure 12 shows an image of the void space at ρ = 0.43,
approximately ρS , and at lower density ρ = 0.31 for rc = 1.4,
N = 1000. Note that the images produced are sensitive to the
parameters used in the instantaneous interface protocol41 (e.g.,
coarse-graining length). While this qualitative description of
transitioning from an isolated to highly connected void net-
work remains intact, the size, multiplicity, and connectivity
of voids will change depending on one’s choice of param-
eters. As suggested by the void analysis above, around the
tensile instability, voids exist in the inherent structures, yet they
are largely isolated. At reduced density, the network becomes
highly interconnected, a feature seen only in the inherent
structures.

VI. CONCLUDING REMARKS

Here, we have shown that cohesion among particles results
in a tensile instability in the energy landscape. However, this
tensile instability behaves qualitatively differently depending
on the strength of cohesion. We have identified two cohesive
regimes: a strongly cohesive and a weakly cohesive regime.
The former exhibits an athermal first-order phase transition,23

where in the thermodynamic limit, the system transitions
abruptly at ρS from exclusively homogeneous inherent struc-
tures under large isotropic tension to fractured inherent struc-
tures with large voids at significantly reduced tension. While
the landscape equation of state appears to be passing through
a spinodal at small system sizes, it becomes discontinuous in
the thermodynamic limit.

Weakly cohesive particles also contain a tensile instabil-
ity in the energy landscape. However, its response to system
size is minimal or absent. The tensile instability in this case is
associated with the emergence of a highly interconnected net-
work of small voids. Rather than an abrupt phase transition,
this transition is continuous and remains so in the thermody-
namic limit. Such a response leaves open the possibility that
the precise descriptions of yielding in systems of weakly cohe-
sive particles should be that of a higher-order phase transition.
Given that this behavior applies to particles with rather weak
interactions, there may be limited applicability of the jamming
picture6,8 to particles with cohesion, contrary to suggestions
that attractions can be treated as a perturbation of the jamming
of granular materials.42,43

The picture we have developed here enriches our under-
standing of yielding in systems of cohesive particles as viewed
through the perspective of the energy landscape. While we
have sampled the energy landscape along a high tempera-
ture isotherm, performing athermal expansions (as in Ref. 23)
within the weakly cohesive regime would serve as a useful
complement. It is expected that the weakly attractive regime
will be important for interpreting the tensile behavior of col-
loids and perhaps amorphous protein aggregates. The prin-
ciples outlined here may also apply to the study of brittle
failure, which is often associated with the nucleation of small
cavities. While some have considered the role of disorder44

and rigidity,45 there appears to have been less consideration of
cohesive strength. As suggested by the present work, there is
distinct yielding behavior depending on the cohesive strength,
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suggesting it may be an important variable in the study of
brittle failure.
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