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Abstract. Afundamental understanding of pure-component liquid-liquid phase separation in network-forming
fluids remains an open challenge. While considerable progress has been recently made in demonstrating the
existence of such a phase transition in some models via rigorous free energy calculations, it remains unclear
what aspects of a model are sufficient, necessary, and/or prohibited in order for it to exhibit a liquid-liquid phase
transition (LLPT). Among the simplest models capable of producing water-like anomalies is the spherically-
symmetry two-scale Jagla potential, for which an LLPT has been identified via equation of state calculations.
In this work, we perform rigorous free energy calculations to demonstrate the existence of an LLPT in the Jagla
model. We also utilize finite-size scaling analysis to calculate the surface tension associated with the LLPT.
In addition to the thermodynamics of the model, we investigate the relaxation times for density and bond-
orientational order in both liquid phases and show that, contrary to assertions in the literature, the characteristic
relaxation time of bond-orientational order is not orders of magnitude slower than that of density. To the
contrary, we actually identify conditions for which density is the slowly relaxing order parameter. In addition
to the original parameterization of the Jagla model, we provide in the “Appendix” preliminary free energy
surface calculations for select parameterizations of the generalized family of Jagla potentials spanning from the
original (anomalous, water-like) Jaglamodel to the Lennard-Jonesmodel. These calculations indicate that, as the
parameterization moves towards the Lennard-Jones limit, the LLPT disappears within the range of parameters
explored. Throughout the paper, we compare our results for the Jagla model with those found in the literature for
the ST2 model of water in order to emphasize key similarities and differences between two models that exhibit
pure-component liquid-liquid phase separation.
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1. Introduction

The possible existence of a liquid-liquid phase transition
(LLPT), and its associated liquid-liquid critical point
(LLCP), in pure supercooled liquid water has been the
subject of vigorous debate over the past two decades.1–17

While other hypotheses18,19 have been put forth, the
existence of such a liquid-liquid critical point would
serve to explain several of the celebrated anomalies
of supercooled water, such as the decrease of den-
sity and increase of compressibility upon cooling, the
increase in diffusivity upon compression, and the appar-
ent divergences in its response functions as the liquid
is cooled well below the freezing temperature.20 The
LLCP scenario also serves as an intuitive explanation

*For correspondence
†Dedicated to the memory of the late Professor Charusita
Chakravarty.

of the polyamorphism observed in glassy water,21,22 for
which the high density amorphous (HDA) and low den-
sity amorphous (LDA) glassy phases are thought to
be low-temperature structurally arrested manifestations
of the high density liquid (HDL) and low density liq-
uid (LDL), respectively.1 In addition to water, other
network-forming fluids such as silicon23–28 and sil-
ica29–31 have also been studied in order to explore the
possible existence of an LLCP.

The proposed location of the LLCP in the afore-
mentioned network-forming fluids is deep within the
supercooled liquid region, below the homogeneous
nucleation temperature (i.e., the empirical limit of liq-
uid stability with respect to the crystalline phase) in a
region referred to as ‘no man’s land’.32 Because of the
experimental difficulties associated with studying the
liquid phase at these extreme conditions, computer sim-
ulations havebeenutilized to determinewhether amodel
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single-component system is capable of demonstrating
a first-order transition between two distinct metastable
liquid phases.

Among the variousmodels of network-forming fluids
which have been investigated, the ST2 model of water33

has received perhaps the most attention, which is fitting
because the metastable LLCP hypothesis was first put
forth based on equation of state data obtained from that
model.1 More recently, the debate over whether ST2
water exhibits an LLCP was rekindled by a vigorous
discussion in the literature.3–11,13–17 Most of these inves-
tigations, utilizing state of the art simulations techniques
and rigorous free energy calculations, come to the same
conclusion: ST2 water exhibits a bona fide metastable
LLPT which terminates at a metastable critical point.

While a bevy of evidence has been put forth sup-
porting the LLCP scenario in the ST2 model of water,
it has also been shown that other models of anoma-
lous network-forming fluids, such as the SW model
of silicon,34 and the closely related mW model of
water35 do not exhibit such behavior.4,6,28 Hence, it
remains unclear what aspects of a model will allow for
the existence of an LLPT. Smallenburg et al.,36 made
progress along these lines by developing a theoretical
model of tetrahedrally-coordinated patchyparticleswith
flexible patch orientation and adjustable ‘softness’ of
inter-particle patch interactions. By modulating these
parameters, the researchers were able to identify regions
of parameter space for which an LLPT is metastable
with respect to crystallization, as well as regions where
it is stable with respect to crystallization down to zero
temperature, thereby ‘erasing no-man’s land’.

Other models which have been investigated within
the context of liquid-liquid phase separation are the so-
called core-softened models. These pairwise isotropic
potentials, originally introduced by Hemmer and
Stell, 37,38 contain a repulsive core coupled with a region
of softening in the form of a shoulder or a ramp. This
class of models is particularly appealing since it very
simply introduces two characteristic length scales: a
longer distance which allows for the creation of open,
lower-density network structures at low pressure, and
a shorter distance which is realized at higher pressures
when the open network collapses to a more compact
state. The notion of two inherent length scales is thought
to be a key ingredient in the occurrence of an LLPT in
water.39

Along this line of reasoning, Jagla40 developed a
spherically symmetric core-softened linear-rampmodel
with a repulsive hard core and an attractive basin.
With an appropriate choice of potential parameters, this
model has been shown40–43 to exhibit an LLPT, termi-
nating at a critical point which is stable43 with respect to

freezing. In addition to anLLPT, the Jaglamodel is capa-
ble of producing many of the thermodynamic, dynamic,
and structural anomalies of liquid water and other
network-forming fluids, including a density anomaly,20

diffusivity anomaly,44 structural anomaly,44 the anoma-
lous behavior of thermodynamic response functions20

(i.e., isobaric heat capacity and isothermal compress-
ibility), and a fragile-strong dynamic crossover45 upon
crossing the Widom line (i.e., locus of maximum corre-
lation length in the one phase region, emanating from the
critical point).41–43,46 Moreover, the Jagla model repro-
duces several of the characteristics of glassy polyamor-
phism inwater, including the formation of anHDA solid
and an LDA solid, and a very-high density amorphous
(VHDA) solid.47

The Jagla model is a striking example of a simple
pair potentialwith twocharacteristic length scaleswhich
displays an LLPT and several of the anomalies of water
without incorporating anisotropic interactions. This is in
contrast to othermodels33,36 forwhich anLLPThas been
discovered, wherein anisotropy is intrinsic to the poten-
tial. However, despite the commonality of an LLPT, the
Jagla model does exhibit key differences with respect
to the aforementioned33,36 models. Focusing in particu-
lar on the ST2 model of water, we note that the LLPT
coexistence line in the pressure-temperature plane is
negatively sloped,5 whereas in the Jagla model it is
positively sloped.41 This is due to the fact that, in the
Jagla (ST2) model, the HDL phase is of lower (higher)
entropy than the LDL phase, and hence the Clapeyron
equation dictates that (dP/dT)coex is>0 (<0). The Jagla
potential also differs from ST2 and other water models
in that, for the Jagla potential the HDL phase exhibits
strong (i.e., Arrhenius) temperature-dependent dynam-
ics and the LDL phase exhibits fragile (i.e., power law)
behavior, while for the ST2 potential the HDL phase
is fragile and the LDL phase is strong.43,46 It has been
noted48 that this inversion is generally correlated with
the slope of the LLPT coexistence line, in that the more
ordered (i.e., lower entropy) liquid is strong, while the
less ordered (i.e., higher entropy) liquid is fragile.
The Jagla model’s spherically symmetric potential

lacks the tetrahedral-network character found in water,
and hence it forms a 12-coordinated hexagonal close
packed (HCP) crystal as opposed to a 4-coordinated
tetrahedral crystal such as hexagonal ice or cubic ice.
However, this can be accounted for by considering one
Jagla particle as ‘effectively’ corresponding to twowater
molecules: one full water molecule plus 1/4 of each of
its four nearest neighbors.49 Indeed, operating under this
assumption, researchers were able to assign physical
units to the Jagla potential in order to facilitate com-
parison with other water models, and experiments.47,49



A free energy study of the liquid-liquid phase transition 803

One issue of implementation regarding the Jagla
potential is that it is not everywhere differentiable and
hence gives rise to discontinuous forces. This is an
issue in so far as it hinders the ability to study the
potential with conventional molecular dynamics. Sev-
eral researchers43,46,47,50 have accordingly implemented
discrete molecular dynamics simulations in which the
continuous Jagla potential is approximated by a series of
step functions. More recently, Abraham et al., 48 devel-
oped a smooth version of the Jagla potential, which
they term the Fermi-Jagla potential. The Fermi-Jagla
potential qualitatively maintains the important water-
like anomalies of the original potential, including the
LLPT, with the exception that the liquid-liquid coexis-
tence line has a slightly negative slope in the P−T plane.
Beyond the original Jagla potential, 40 one may con-

sider a generalized family of Jagla potentials by tuning
parameters such as the depth of the potential minimum
and the distance to the potential minimum with respect
to the hard-core distance. It has previously been illus-
trated for non-attractive ramp potentials that the ratio
of the two characteristic length scales must be in the
vicinity of ∼0.57 in order to most closely reproduce,
in a qualitative sense, the anomalies of water.51 This is
thought to be related to the fact that the ratio of radial
distances to the first and second peaks of the oxygen-
oxygen pair correlation function in water is∼0.6, while
the ratio for simple liquids is ∼0.5. The original Jagla
model has a ratio of length scales ∼0.58, which is very
close to the value for real water.
In a very interesting study, Gibson and Wilding42

investigated the generalized family of Jagla potentials
for which they varied both the depth of, and the radial
distance to the potential minimum, so as to interpolate
between the original Jagla potential and a ramp-based
approximation to the Lennard-Jones potential. As the
researchers varied the potential from the original Jagla
parameterization towards the Lennard-Jones limit, they
observed a decrease in the liquid-liquid critical temper-
ature, and an increase in the temperature at which the
liquid spontaneously crystallized, leading to a condi-
tion where the LLCP (and thereby the entire LLPT) was
unstable with respect to crystallization. We note that the
“freezing point”as defined by these authors appears to
be the temperature (for a given pressure) at which the
liquid becomes unstable and the system spontaneously
crystallizes, not the true equilibrium freezing/melting
point. The equilibrium freezing/melting line for the
Jagla potential was calculated by Xu et al., 43 and the
intersection of the freezing line and LLPT coexistence
line is only slightly below the critical temperature. Irre-
spective of this issue, the authors observed that upon
moving further towards the Lennard-Jones limit, the

slope of the liquid-liquid coexistence line changed from
positive to negative. Just beyond this crossover to a neg-
atively sloped coexistence line, the increasing rate of
spontaneous crystallization at the relevant conditions
made determination of the LLCP prohibitive. Since the
Lennard-Jones fluid does not exhibit an LLPT, it stands
to reason that theremust be somepoint between the Jagla
potential limit and the Lennard-Jones approximation
limit at which the LLPT disappears altogether; however,
the study of Gibson andWilding42 was unable to defini-
tively determine for what parameterization this occurs.

More recently, Luo et al., 50 performed an analo-
gous study in which they investigated the LLPT by
examining the behavior of the Widom line while mod-
ifying the Jagla potential. However, their modification
was slightly different in that they chose to maintain a
constant potential minimum depth while continuously
transforming theminimum’s radial distancewith respect
to the hard-core distance. As with the study of Gib-
son and Wilding,42 they observed that decreasing the
radial distance of the potential-minimum caused the
LLCP to retreat to lower temperatures, while the slope
of the liquid-liquid coexistence line correspondingly
decreased, and eventually became slightly negative.
The researchers also reported that50 at precisely the
same ratio of length scales (hard-core to potential min-
imum radial distances) as in the Gibson and Wilding
study, locating the LLCP became impossible due to pro-
hibitively rapid crystallization in their simulations.

While a bevy of equation of state calculations have
been put forth illustrating an LLPT for the Jagla poten-
tial, there has not yet been a rigorous free energy surface
study of the type performed for the ST2 model. Given
the fact that equation of state calculations alone may
lead to the false impression of an LLPT,28 we will, for
the first time, perform explicit free energy surface cal-
culations to explore the existence or lack thereof of an
LLPT in the Jagla model. We utilize free energy tech-
niques, coupled with finite-size scaling analysis, for
the calculation of liquid-liquid surface tension in the
Jagla potential. We also investigate bond-orientational
and translational order in the context of the LLPT.
In addition to the thermodynamics of the model, we
investigate the oft-discussed relaxation times of den-
sity and bond-orientational order for both the HDL
and LDL phases, and discuss the implications of our
results with respect to similar calculations performed
for the ST2 model. Beyond the original parameter-
ization of the Jagla model, we also provide in the
“Appendix” a preliminary investigation of free energy
surfaces for select parameterizations of the generalized
family of Jagla potentials which range from the orig-
inal (anomalous) Jagla model towards the limit of the
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(simple) Lennard-Jonesmodel. Our results indicate that,
as the parameterization moves towards the limit of the
Lennard-Jones model, the LLPT seems to disappear
within the range of parameters explored. Throughout
the paper, we compare our results for the Jagla model
with those found in the literature for the ST2 model
of water in order to emphasize key similarities and
differences between two models which exhibit pure-
component liquid-liquid phase separation.

The paper is organized as follows. In Section 2, we
describe the model, simulation methods, and relevant
order parameters. In Section 3, the results of our study
are presented and discussed. Finally, in Section 4, con-
cluding remarks are provided, along with suggestions
for future work.

2. Models and numerical methods

2.1 Model system

The Jagla attractive two-scale spherically-symmetrical ramp
potential40 is a pairwise potential inwhich the energy of inter-
action, v, between two particles separated by some distance,
r, is the sum of an attractive term and a repulsive term, as
given by Equation (1):

v(r) = vA(r) + vR(r) (1)

where, vA(r) is the attractive part of the potential, and vR(r)
is the repulsive part of the potential, each defined as:

vR(r) =
⎧
⎨

⎩

∞ ; r < r0
ε0 (r1 − r)/ (r1 − r0) ; r0 ≤ r ≤ r1
0 ; r > r1

(2)

vA(r) =
{−η (r2 − r)/(r2 − r0) ; r ≤ r2
0 ; r > r2

(3)

where, r0 is the hard-core distance, r1 is the intermediate
distance which defines the location of the potential mini-
mum, and r2 is the distance beyond which the potential is
identically zero. These distances are subject to the constraint
r0 < r1 < r2. The energetic parameters are ε0 and η, subject
to η > 0. For this potential, we adopt the parameterization
originally proposed by Jagla40: r1 = 1.72r0, r2 = 3.0r0,
and η = 0.31ε0. Unless otherwise specified, all quantities are
expressed in reduced units, with the basis length scale set to
r0, and the basis energy scale set to ε0. Hence, temperature
is expressed in units of ε0/kB , where kB is Boltzmann’s con-
stant, pressure is expressed in units of ε0/r30 , and density is
expressed in units of r−3

0 .
We note that other researchers43,46,47,52 have employed

an alternative (but equivalent) functional form with energy
scale “U0”. In this alternative functional form, U0 repre-
sents the magnitude of the energy minimum of the attractive
basin, v(r1), while UR represents the energy at the top of
the repulsive ramp, v(r0) (refer to Figure 1 for a graphical
representation of the Jagla potential). Some studies43,46,47

Figure 1. Graphical illustration of the attractive two-s-
cale spherically-symmetrical ramp potential of Jagla.40 The
parameterization is specified by r1 = 1.72r0, r2 = 3.0r0, and
η = 0.31ε0. The v(r)/ε0 = 0 line is provided to emphasize
the potential’s shallow attractive well.

employ a ratioUR/U0 = 3.5,while other studies53,54 employ
UR/U0 = 3.56. On the other hand, if one uses the energy
parameterization of the original Jagla potential,40 the ratio is
UR/U0 = 3.48. This difference may seem miniscule, but it
has a non-negligible effect on the certain aspects of themodel,
including the location of the liquid-liquid critical point, as dis-
cussed by Xu et al. 53 To facilitate a comparison between the
original Jagla energy parameterization which we study, and
the alternative energy parameterizations, we set equal the val-
ues of the potential minimum for each functional form. After
simple algebra, one can calculate the relationU0 = 0.1984ε0.
With this conversion factor, we calculate that the difference
in reported41,53 critical temperatures between the slightly dif-
ferent energy parameterizations UR/U0 = 3.56 vs. 3.48, is
roughly 0.0016 ε0/kB , or 2%of the critical temperature calcu-
lated41 for the original Jagla parameterization. We also point
out that the vastmajority of studieswhich employ this alterna-
tive energy scale also employ the discretemolecular dynamics
technique, in which the Jagla potential is approximated by
a series of step functions. Hence, slight discrepancies in
results may also be expected due to the implementation of
this approximation.

Applying the original parameterization,40 the Jagla poten-
tial is illustrated in Figure 1. Upon examination, the two
inherent length scales are immediately obvious: the attrac-
tive basin at r1, and the hard-core at r0.

With the pair-interaction potential defined by Equations
(1)–(3), it is a simple matter to calculate the total internal
energy, U , of a system of N particles:

U (1, ..., N ) =
N−1∑

i=1

N∑

j=i+1

v(ri j ) (4)

Where, ri j is the distance r between particles i and j .
In addition to the aforementioned original parameteriza-

tion of the Jagla potential,40 we provide in the “Appendix” a
preliminary investigation of the generalized family of Jagla
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potentials by varying the length scales r1 and r2, and the
depth of the potential-minimum located at r1, as previously
explored by Gibson and Wilding.42 In their work,42 these
authors examined a range of parameters spanning between
the original Jagla potential and a ramp-based approximation
to the 6-12 Lennard Jones potential. To facilitate the manner
in which Gibson and Wilding varied the energy and length
parameters of the Jagla potential, they rearranged the form
given in Equations. (1)-(3), and expressed it in the following
equivalent way:

v(r) =

⎧
⎪⎪⎨

⎪⎪⎩

∞ ; r < r0
ε0(r0−r)(D+ω)

r1−r0
+ ε0ω ; r0 ≤ r < r1

ε0D (r2 − r)/ (r1 − r2) ; r1 ≤ r < r2
0 ; r ≥ r2

(5)

where, the new terms D and ω are simply the following
regroupings:

D = η (r2 − r1)

ε0 (r2 − r0)
(6)

ω = 1 − η

ε0
(7)

2.2 Simulation methods and order parameters

In the present study,weperformedMonteCarlo simulations in
multiple ensembles. Standard single-particle move Metropo-
lis Monte Carlo (MC) simulations were performed in the
canonical (NVT) and isothermal-isobaric (NPT) ensembles
using an in-house code developed for the Jagla potential.
The in-house NPT MC code was also employed to perform
umbrella sampling simulations. Periodic boundary conditions
were employed in all simulations. Unless otherwise noted, a
cubic simulation box geometry was employed.

For all NVT MC calculations, the pressure was calculated
using a trial volume perturbation method, as described in the
literature.55 For NVT simulations, a MC ‘sweep’ is defined
as N trial single-particle displacements, where N is the total
number of particles. During the equilibration period of the
NVT simulations, the maximum particle displacement was
adjusted to give an acceptance ratio of approximately 20–
30%.

For all NPT MC calculations the ratio of trial single-
particle displacements to trial volume changes was N : 1,
where N is the number of Jagla particles in the system.
For NPT simulations, we define a MC sweep as either N
attempted single-particle displacements, or one attempted
volume change. Aswith themaximumdisplacement distance,
the maximum logarithmic volume changes were adjusted to
give an acceptance ratio of approximately 20–30%.

The umbrella samplingMCcalculationswere performed in
the NPT ensemble, using the commonly-employed4–6,8 har-
monic biasing potential:

Ubias = kρ

(
ρ − ρ∗)2 + kQ6

(
Q6 − Q∗

6

)2 (8)

where, ρ is the density of the system and Q6 is the cus-
tomary bond-orientational order parameter,56 which is used

to distinguish crystalline and liquid states. The parameters
ρ∗ and Q∗

6 are the specified target values of density and
bond-orientational order parameter in each umbrella sam-
plingwindow. The parameters kρ and kQ6 are constants which
may be tuned so that there is sufficient histogram overlap
between adjacent windows. We typically adopt the values
kρ = 1, 500ε0r60 , kQ6 = 1, 000ε0. Spacing between umbrella
windows (i.e., between target values) was typically 0.025r−3

0
in ρ∗, and 0.02 in Q∗

6, although finer spacing was used as
necessary to ensure adequate histogram sampling.

The order parameter Q6 is a function of the system’s aver-
aged spherical harmonic components,56 defined generally as
Ql by Equations (9)–(11):

ql,m(i) = 1

N1

N1∑

j∈nn(i)

Ym
l

(
φi j , θi j

)
, −l ≤ m ≤ l (9)

where, Ym
l

(
φi j , θi j

)
is the l, m spherical harmonic function

of the angular coordinates of the vector joining particles i and
j , and N1 is the number of nearest-neighbors in the first coor-
dination shell. We take N1 = 12 for the 12-fold coordinated
Jagla system, which forms an HCP crystal. This term is then
summed over all particles to calculate Ql,m :

Ql,m =
N∑

i=1

ql,m (i) (10)

where, N is the system size. Finally, we obtain the global
order parameter Ql :

Ql = 1

N

(
l∑

m=−l

Ql,m Q̂l,m

)1/2

(11)

where, we use the circumflex (̂ ) to denote the complex con-
jugate. The parameter Q6 is a scalar quantity, whose value
is 0.485 for a perfect HCP lattice.57 For amorphous systems,
Q6 has a small, nonzero value for finite-sized systems (i.e.,
∼0.02−0.05 for the system size range studied), which van-
ishes as N−1/2 with increasing system size.

The translational order parameter,58 t̃ , measures the pro-
clivity of pairs of particles to adopt preferential separations.
This quantity, given by Equation (12), vanishes for an ideal
gas and is large for a crystal.

t̃ = 1

rc

rc∫

0

∣
∣
∣g(2)(r) − 1

∣
∣
∣ dr (12)

where, g(2)(r) is the radial distribution function, and rc is the
cutoff distance, whichwe choose as half of the simulation box
length, L/2.

The entropy of a monatomic, homogeneous, isotropic fluid
can be expressed an expansion in multiparticle correlation
functions, expressed generally as:59,60

S = Sig +
N∑

n=2

S(n) (13)
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where, S is the entropy, Sig is the entropy of an ideal gas at
the same temperature and density as the system of interest,
and S(n) is the n-body correlation contribution to the entropy.
Note that all entropic quantities are expressed on a per-particle
basis in units of kB . We choose to truncate at the two-body
correlations, yielding S = Sig + S(2). The ideal gas contribu-
tion to the entropy is given by:

Sig = 5

2
+ ln

(
ρ�3

)
(14)

where, � is the thermal de Broglie wavelength. In order to
express the thermal de Broglie wavelength in reduced units,
we chose to incorporate the conversion factors put forth by
Xu et al.; 47 however, this choice is not particularly impor-
tant, since the thermal de Broglie wavelength is constant for
a given temperature, and we are only interested in comput-
ing the change in entropy between state points at isothermal
conditions. The two-body contribution to the entropy, S(2), is
given by:59,60

S(2) = −2πρ

∞∫

0

[
g(2)(r) ln g(2)(r) − g(2)(r) + 1

]
r2dr

(15)

2.3 Free energy surfaces

From our NPT umbrella sampling simulations, we calculated
two-dimensional Gibbs free energy surfaces, F(ρ, Q6), via
the weighted histogram analysis method61 (WHAM). The
free energy at a particular combination of ρ and Q6 is related
to the joint probability distribution of the order parameters,
P(ρ, Q6), by the relation:

F (ρ, Q6) = −kBT ln P (ρ, Q6) + const. (16)

where const. is an irrelevant constant, since we are only inter-
ested in relative free energies at a given temperature. Error
estimates for the free energy surfaces were calculated by
the bootstrapping method,62 generating 200 independent sur-
faces in order to calculate the standard deviation.

A free energy surface, calculated at temperature T and
pressure P , can be reweighted in order to approximately deter-
mine the free energy surface at the same temperature and some
new pressure P + 
P , provided that |
P| is not too large.
This reweighting is carried out according to the following
expression:

F (ρ, Q6; T, P + 
P) = F (ρ, Q6; T, P) + N
P/ρ

(17)
Note that Equation (17) is simply derived from the thermo-
dynamic relation (∂G/∂P)T = V , replacing the Gibbs free
energy, G, with the Landau free energy, F (a more detailed
discussion of Landau free energies, and how they relate to the
free energy of phases is provided in “Appendix A.4”) approx-
imating the infinitesimal change, ∂ , as a finite change, 
, and
noting that V = N/ρ.

In order to determine the free energy as a function of den-
sity alone, the two-dimensional surface may be contracted to
obtain a free energy profile via:

F (ρ) = −kBT ln

(∫

exp [−βF (ρ, Q6)] dQ6

)

(18)

where the integration is performed over the Q6 range of
interest, typically chosen based on the specific topology of
the two-dimensional free energy surface. A corresponding
expression for the free energy as a function of Q6 alone,
F(Q6), is trivially derived by instead integrating along the
density dimension.

The run durations for the free energy surface simulations
were based on the autocorrelation functions of ρ and Q6,
defined generally as:63

Cξ (t) = 〈(ξ(t) − 〈ξ 〉) (ξ(0) − 〈ξ 〉)〉
〈
ξ2

〉 − 〈ξ 〉2 (19)

where ξ represents the order parameter (ρ or Q6). The “char-
acteristic” relaxation time for each of the order parameters,
τξ , was defined as the integrated autocorrelation time, given
by the following relation:64

τξ =
K f∑

k=0

(

1 − k

K f

)

tsampleCξ (ktsample) (20)

where, tsample is the time interval (in units of MC sweeps)
between the data points comprising the autocorrelaton func-
tion, k is the index of the integer number of data pointsmaking
up the autocorrelation function (k = t/tsample) and K f is
the final data point of the autocorrelation function incorpo-
rated into the integration (i.e., we perform the integration until
time t f = tsampleK f ). We choose to perform the integration
until the autocorrelation function first crosses zero. Equilibra-
tion and production periods were both typically performed
for at least ∼O(103−104) times the larger of the two inte-
grated autocorrelation times (i.e., τρ vs. τQ6 ) at the given state
point. Additional details regarding equilibration and produc-
tion durations are provided as needed insubsequent sections.

3. Results and Discussion

3.1 Thermodynamics and free energy surfaces

In order to locate the LLPT in this model, we first per-
form equation of state calculations in the NVT and NPT
ensembles, as performed by several others.40,41,43 In par-
ticular, we examine the behavior of isotherms to check
for signatures of a first-order fluid-fluid phase transi-
tion. In the NVT ensemble, an isotherm which traverses
such a phase transition exhibits a non-monotonicity in
the P − V plane referred to as a “van der Waals (vdW)
loop”. Though, we note that this loop is only in loose
analogy with that exhibited by cubic equations of state
such as the van derWaals equation. In finite-sized simu-
lations, a vdW loop is formed due to the relatively large
free energy cost associated with forming an interface
between phases, and hence the loop becomes progres-
sively flatter as the system size is increased, coinciding
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Figure 2. Equation of state analysis of the LLPT of the Jagla potential for
T = 0.06ε0/kB, N = 300 particles. (a) pressure vs. density, (b) pressure vs. Q6. Cal-
culations performed via NVT Monte Carlo (blue circles), and NPT Monte Carlo initiated
with both HDL (cyan squares) and LDL (red crosses) configurations. The NVT data was fit
with a smoothing spline, and the coexistence pressure (blue horizontal tie line) was deter-
mined viaMaxwell equal-area construction in the P − V plane. Note the hysteresis evident
in the NPT simulations. Error bars are calculated from block averaging of the data.

with the coexistence pressure (i.e., the tie line) in the
thermodynamic limit. However, this analogy is rather
useful in determining phase equilibrium properties, as
we will verify below with our free energy calculations.
An example vdW loop, calculated via NVT Monte

Carlo, is illustrated in Figure 2(a), at temperature T =
0.06ε0/kB . Based on the reported41 liquid-liquid critical
temperature, T LL

C = 0.076(2)ε0/kB , the reduced tem-
perature (Tr = T/T LL

C ) at this condition is 0.79. Note
the term “reduced temperature” is not to be confused
with “reduced units” as described in Section 2.1, which
simply means that all quantities are normalized by basis
length and energy scales.
The points on the isotherm for which (∂P/∂ρ)T = 0

are the intrinsic limits of stability for the liquid phases,
known as spinodal points. The coexistence pressure
(binodal pressure), Pbinodal between the two liquids at
the given temperature is determined by performing a
Maxwell equal-area construction over the vdW loop in
the P − V plane. In order to perform the Maxwell con-
struction and determine the spinodal pressures, we fit
the isotherm data with a smoothing spline. For T =
0.06ε0/kB, Pbinodal is approximately 0.02 ε0/r 30 , as illus-
trated by the horizontal tie line in Figure 2.
We also search for signatures of a fluid-fluid phase

transition by performing simulations in the NPT ensem-
ble. Referring to Figure 2(a), we perform two sets of
NPT Monte Carlo simulations for the temperature of
interest, with each set comprised of the same collection
of state points. One set is initiated from an LDL con-
figuration, while the other set is initiated from an HDL
configuration. Both initial configurations were initially
equilibrated at the temperature of interest (in the case
of Figure 2, T = 0.06ε0/kB). After re-equilibrating

the simulations in each set to appropriate pressure, we
observe that the simulations in the metastable region
(PHDL

spinodal < P < PLDL
spinodal) can persist in their initiated

phase for extended periods of time. However, as the
respective spinodals are approached, there comes a point
beyond which the simulations spontaneously change to
the stable phase before equilibration is possible. This
type of hysteresis in the NPT ensemble is another clear
signature of a phase transition.

Referring to Figure 2(b), we also note that in the Jagla
potential the average Q6 shows very interesting behav-
ior. At coexistence, the HDL and LDL phases for N =
300 have average Q6 values of approximately 0.02 and
0.05, respectively, with the characteristic loop behavior
connecting the two. Hence, while Q6 values for amor-
phous phases are indeed system-size dependent and tend
towards zero as N → ∞, the bond-orientational order
parameter is able to distinguish between the HDL and
LDL phases in the Jagla potential. We also note that, in
spite of the fact that the HDL phase has a lower entropy
than the LDL phase at coexistence41 (implying that the
HDL is the more structurally-ordered liquid phase for
the Jagla potential), the HDL phase has lower bond-
orientational order than the LDL phase. We found this
result interesting, and therefore decided to examine the
translational order, t̃ , of both liquid phases at coexis-
tence as shown in Figure 3(a). Referring to this figure
we see that, at coexistence, the HDL has a higher degree
of translational order than the LDL phase. The behavior
of the translational order appears to be clearly reflected
in the entropy (truncated at the two-body contribution)
as shown in Figure 3(b). As previously reported,41 we
observe that the HDL phase is indeed the lower-entropy
phase at coexistence.
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Figure 3. Plots of (a) pressure vs. t̃ and (b) pressure vs. entropy at T = 0.06ε0/kB ,
N = 300 particles. Calculations performed viaNVTMonte Carlo. The coexistence pressure
(blue horizontal tie line) was determined viaMaxwell equal-area construction in Figure 2(a).
The entropy was calculated up to the two-body contributions via the combination of Equa-
tions (14) and (15). At coexistence, the HDL phase has higher translational order than the
LDL phase, and also has lower entropy.

Figure 4. Pressure-Temperature diagram of the Jagla
potential, N = 300 particles. The binodal curve (blue cir-
cles) and spinodal curves (black circles) were calculated as
illustrated in Figure 2(a). The red circle is the reported LLCP
ofWilding andMagee.41 The lines serve as guides to the eye.

By performing a series of Maxwell equal-area con-
structions at various subcritical temperatures (T <

T LL
C ), we are able to trace the binodal and spin-

odal curves for the LLPT. These results, previously
demonstrated elsewhere43 for a discretized step func-
tion approximation to the Jagla potential, are shown
in Figure 4. As observed previously, the liquid-liquid
coexistence locus is both positively sloped and approx-
imately linear in the P − T plane over the range of
temperatures explored.43 If one assumes linearity over
the entire temperature range and fits a line to the coex-
istence points in Figure 4, we find that (dP/dT )coex is a
constant approximately equal to 0.86kB/r 30 . According
to the Clapeyron equation, this derivative is equal to the
ratio of entropy and volume changes between the HDL
and LDL phases. For T = 0.06ε0/kB we can obtain the
coexistence entropies for each phase from Figure 3(b),

and the coexistence volumes from Figure 2(a), calculat-
ing that (dP/dT )coex = 
S/
V = 0.7kB/r 30 , which is
a 14% discrepancy. This discrepancy is likely primarily
due to the fact that the entropy in Figure 3(b) is truncated
at the two-body contributions.
Once the binodal and spinodals were determined, we

proceeded to calculate free energy surfaces as a function
of ρ and Q6. An example of this provided in Fig-
ure 5, which is for the same temperature as Figure 2
(T = 0.06ε0/kB). These free energy surfaces have the
same qualitative features as free energy surfaces previ-
ously calculated for the ST2 model.5,8,9 Namely, there
are two low-Q6 basins of differing density, representing
the HDL and LDL phases. At the predicted coexis-
tence pressure, the basins are of equal depth, and at the
predicted spinodal pressures, one of the basins disap-
pears. As observed for the ST2 model, the LDL basin
exhibits a more gradual (i.e., less steep) variation in the
Q6 direction than the HDL basin.8,9 Note that since the
temperature 0.06ε0/kB is well below the liquid-liquid
critical temperature (Tr = 0.79), the free energy barrier
separating the HDL and LDL basins (≈ 47kBT ) is sig-
nificantly larger than the barriers typically observed in
free energy studies of ST2 for comparable system sizes
(i.e., 3–4 kBT ).5,9 This is because free energy studies
of ST2 have generally been performed at much higher
reduced temperatures (i.e., Tr = 0.96–0.975,8,9) as cal-
culations are hindered by significantly slower relaxation
dynamics and increased computational costs due to the
relative complexity of the potential, making lower tem-
peratures difficult to investigate.An example free energy
surface at a reduced temperature Tr = 0.97 is provided
in Figure 6, where the barrier separating the liquid basis
at coexistence is approximately 2kBT . We also take
this opportunity to point out that at the lowest tem-
peratures studied we found it difficult to sample the
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Figure 5. Free energy surfaces for the Jagla potential, at T = 0.06ε0/kB, N = 300 particles, and pressures of (a)
−0.01ε0/r30 , (b) 0.02ε0/r30 , and (c) 0.035ε0/r30 . Agreement between the binodal and spinodal pressures predicted in
Figure 2 and the free energy surfaces is excellent. Contour spacing is 5kBT , and the statistical uncertainties are less than, or
on the order of 1 − 2kBT for most of the bins.

Figure 6. Free energy surfaces for the Jagla potential, at T = 0.0735ε0/kB, N = 300 particles, and pressures of (a)
0.03ε0/r30 , (b) 0.0322ε0/r

3
0 , and (c) 0.0343ε0/r

3
0 . The free energy surfaces in panels (a) and (c) were calculated by reweighting

the surface shown in panel (b). Contour spacing is 1kBT , and the statistical uncertainties are less than or approximately equal
to 0.25kBT for most of the bins. Note that the free energy barrier separating the HDL and LDL basins is approximately 2kBT ,
which is 1−2 kBT lower than the barrier observed in ST2 water at the same- reduced temperature and N = 192 molecules.5,9

high-density high-Q6 region. While this region of the
free energy surface is not of great interest to the LLPT
itself, studying this part of the surface may reveal alter-
nate pathways to crystallization, or perhaps the existence
of alternate crystal phases, and constitutes an area for
future research.
The temperature of Figure 5 is well below the equilib-

rium freezing/melting line reported by Xu et al.,43 indi-
cating that the coexisting liquid phases are metastable
with respect to the HCP crystal phase. Limmer and

Chandler have argued that the appearance of an LDL
basin in free energy surface of ST2 is a non-equilibrium
artifact associated with the disparity in relaxation times
between density and Q6, coupled with constraining the
surface calculation to low (liquid-like) values of Q6. 6

They argue that, upon allowing the free energy surfaces
to ‘truly’ equilibrate, the LDL basin would disappear.
Palmer et al., 9 categorically disproved this assertion
by sampling the free energy surface from the LDL to
the stable crystal basin, and then reversibly sampling



810 Francesco Ricci and Pablo G Debenedetti

from the crystal basin back to the LDL by initiating the
reverse simulations with a crystal configuration. Their
reverse calculations incurred no change in the predic-
tion of an LDL liquid state. We have performed a series
of analogous calculations for the Jagla potential at the
metastable condition T = 0.06ε0/kB , P = 0.02ε0/r 30
in which we sample from the LDL to the stable HCP
basin, and then sample in the reverse direction. While
our first calculations did exhibit significant hysteresis in
the vicinity of the crystal basin due to the formation of
defects associatedwith the use of a cubic simulation box
(the unit cell of HCP is not cubic, and hence the crystal
phase is artificially constrained for this box geometry),
there is no hysteresis for Q6 < 0.3, with the LDL basin
and saddle-point transition to the crystal phase perfectly
maintained. We then implemented the same set of cal-
culations with non-isotropic volume moves,65 allowing
the box length to vary independently in all three dimen-
sions, which resulted in much better agreement between
the forward and reverse free energy surfaces. Refer to
the “Appendix” for more details.

3.2 Relaxation times

A central theme in the arguments against the existence
of an LLPT in ST2water is the supposed vast separation
of time scales between density and bond-orientational
(Q6) relaxations.6 According to this hypothesis, the
appearance of an LDL basin in the free energy surface of
ST2 is caused by a non-equilibrium phenomenon asso-
ciated with the coarsening of the incipient crystal phase,
wherein density fluctuates widely in the early stages of
coarsening prior to the development of long-range struc-
tural order. To support these arguments, Limmer and
Chandler reported that the characteristic relaxation time
(based on the autocorrelation function) of density (τρ)

is typically at least two orders of magnitude smaller6

than the characteristic relaxation time for Q6(τQ6) in
the ST2 model of water. Limmer and Chandler regard
this separation of time scales as ‘self-evident’;16 how-
ever, the work of Palmer and coworkers9,66 directly
contradicts this assertion. In the LDL phase of ST2 it
has been shown9 that, across multiple sampling tech-
niques, the autocorrelation of density and Q6 decay in
tandem, reaching zero at approximately the same time.
The intermediate behavior of the autocorrelation func-
tions varies slightly depending on the sampling method,
with the density always decaying slightly faster than Q6

for the state points studied; however, upon calculating
the mean autocorrelation times via Equation (20), it is
clear that density and bond-orientational order relax on
the same time scale. In the HDL phase of ST2 the situ-
ation is actually quite different,66 with the interesting

result that autocorrelations of Q6 decay to zero sig-
nificantly faster than those of density. This result is in
direct conflict with the assertions of Limmer and Chan-
dler (i.e., τQ6 >> τρ), and is correspondingly at odds
with previous autocorrelation curves published by those
authors.16 At this time, the reason for this discrepancy
remains unclear.
We will now examine the aforementioned relax-

ation times, τρ and τQ6 associated with the HDL and
LDL phases of the Jagla potential in order to facili-
tate comparisons with ST2 water. It has already been
documented that, at temperatures well below the criti-
cal temperature, the HDL phase of the Jagla model is
significantly (i.e., up to 1-2 orders ofmagnitude) less dif-
fusive than the LDL phase.43 This result is in agreement
with our own observations that simulations of the HDL
phase exhibit longer-wavelength fluctuations in thermo-
dynamic quantities, and tend to take significantly longer
to equilibrate than LDL simulations. This is the opposite
of ST2, for which the LDL is the more slowly relaxing
phase. In Figure 7, we plot the autocorrelation functions
of density and Q6 (Cρ(t) andCQ6(t), respectively) at the
coexistence pressure for T = 0.06ε0/kB .
It is immediately apparent that the autocorrelation

functions in the HDL phase are drastically different,
while in the LDL phase they are almost identical at these
particular conditions. Moreover, in the HDL phase it
is the autocorrelation in density which relaxes signifi-
cantly more slowly than that of Q6. Hence, this serves
as another clear example of a case where the conjec-
ture τQ6 >> τρ is invalid. In this particular case, we
have the completely opposite scenario (τρ >> τQ6), in
qualitative agreement with results recently obtained by
Palmer66 for the HDL phase of ST2.
In order to quantify the autocorrelation times, we

apply Equation (20) and determine that the calculated
autocorrelation times for the LDL phase are τρ =
970 MC sweeps and τQ6 = 800 MC sweeps, while
the autocorrelation times for the HDL phase are τρ =
25, 000 MC sweeps and τQ6 = 1, 700 MC sweeps. In
addition to coexistence conditions, we were also inter-
ested in investigating how the relaxation times of each
liquid vary with pressure along an isotherm in both the
stable and metastable regimes. We therefore compute
values of τρ and τQ6 in each phase at T = 0.06ε0/kB
with pressures traversing the stable and metastable
regions of each liquid, as shown in Figure 8. Note that
we are using the terms ‘stable’ and ‘metastable’ here
to refer to the relative stabilities of the HDL and LDL
phases, and not to the overall thermodynamic stability
of the phase (at T = 0.06ε0/kB both liquid phases are
metastable with respect to the HCP crystal phase for the
range of pressures studied).
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Figure 7. Autocorrelation functions of density and Q6 for unconstrained NPTMC simu-
lations at coexistence conditions T = 0.06ε0/kB , and P = 0.02ε0/r30 (N = 300 particles).
The curves shown are the average of 20 independent simulations. Notice the large dispar-
ity between the autocorrelation functions in the HDL, while in the LDL they are almost
identical at these conditions.

As observed in Figure 8, the behaviors of τρ and τQ6

are drastically different for the HDL and LDL phases. In
the HDL the relaxation times of density are an order of
magnitude larger than those of Q6 (τρ >> τQ6) over the
entire range of pressures studied.Over this range of pres-
sures, spanning from the stableHDL regionwell into the
metastableHDL region, the loci of τρ and τQ6 do not vary
drastically with pressure, and both generally follow the
same trend. In the LDL the relaxation times of density
and Q6 are comparable, and interestingly we observe
an inversion in which variable relaxes more slowly.
Because these simulations are carried out in the NPT
ensemble, as we explored pressures closer and closer
to the spinodal pressures of each phase there eventually
came a point beyond which the phase of interest could

not be sampled for a sufficient length of time before
it spontaneously changed to the stable liquid phase (in
analogy to the hysteresis observed inFigure 2), hencewe
were unable to perform measurements arbitrarily close
to the spinodals. We also performed a similar analysis
at T = 0.065ε0/kB and observed qualitatively identical
behavior in τρ and τQ6 for both phases (see “Appendix”).

Figure 8 provides a comprehensive illustration of how
relaxation times associatedwith an LLPTvary as a func-
tion of pressure in the Jagla model. A similar analysis
with the ST2 model of water could prove instructive,
and would certainly help to better understand the rel-
ative relaxation rates of density and bond-orientational
order in that model, particularly within the context of an
LLPT.

Figure 8. Characteristic relaxation times of density and Q6 as a function of pressure
for unconstrained NPT MC simulations at T = 0.06ε0/kB (N = 300 particles). The
pressure Pbinodal (grey hashed line) is the calculated liquid-liquid coexistence pressure at
this temperature, and Pspinodal (solid black line) denotes the spinodal pressure of the phase
(HDL, LDL). For pressures between Pbinodal and Pspinodal (denoted “Metastable Region”),
the liquid phase of interest is metastable with respect to the other liquid phase. The data
points are the average of the relaxation times, computed individually for each of the 20
independent simulations via Equation (20), and the lines are guides to the eye. Error bars
represent the standard deviation of the relaxation times for the 20 independent runs.
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3.3 Liquid-liquid surface tension

Of inherent importance to the study of phase transitions
is the interfacial tension,γ . Recently, Palmer et al., 9 pro-
duced a preliminary estimate of the liquid-liquid surface
tension in the ST2 model at Tr = 0.96 of approximately
2 mJ/m2. Liquid-liquid surface tension calculations for
the Jagla potential have been provided in the literature54

for a range of reduced temperatures Tr ≈ 0.8 − 0.96,

but these calculationswere performed by evaluating ele-
ments of the pressure tensor obtained during molecular
dynamics simulations in which an explicit HDL-LDL
interface is formed. This method is best suited for
low-to-moderate reduced temperatures because as one
approaches the critical temperature fluctuations grow
and it becomes difficult to maintain a stable interface.67

We evaluate the liquid-liquid surface tension of the
Jagla potential at 3 reduced temperatures near the critical

Figure 9. Calculation of HDL-LDL free energy barrier height at coexistence, T = 0.07ε0/kB , P = 0.0292ε0/r30 . (a) Free
energy surface for N = 900, contours = 2kBT . (b) Contracted free energy surfaces for select system sizes N = 192, 300, 600,
and 900. Error bars in (b) are the standard deviation of 200 contracted bootstrapped free energy surfaces.62 (c) System-size
scaling of the free energy barrier height, FB , for all system sizes studied. The system-size dependence of the free energy
barrier height begins to follow the expected N 2/3 scaling for N ≥ 300 particles. The red line in (c) is a linear fit to the data
points N ≥ 300. Where necessary, free energy surfaces were reweighted slightly in pressure via Equation (17) to achieve
coexistence between the HDL and LDL phases.

Figure 10. Calculation of the liquid-liquid surface tension, γ , of the Jagla potential. (a)
System-size dependence of the effective surface tension for three different temperatures.
For all three temperatures, the three largest system sizes (N = 400, 600, 900) show linear
behavior, and hence these system sizes were utilized for the linear fit at each temperature
which are represented as blacklines. The y-intercept of the linear fit is the extrapolation of
the effective surface tension to infinite system-size for each temperature, γ /kBT . Note that
the ordinate in (a) has units of r−2

0 . (b) Surface tension as a function of scaled temperature,
T̂ = ∣

∣(T − T LL
C )/T LL

C

∣
∣ = |Tr − 1|. A linear fit to the logarithm of Equation (22), illustrated

by the black line, was performed in order to obtain the critical exponent, μ. The calculated
value of μ is 1.33, which is only a 6% discrepancy with the expected value 1.26.
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point (Tr = 0.92, 0.94, 0.97), where the explicit-
interface method54 becomes problematic, by evaluating
the system-size dependence of the free energy barrier
separating the coexisting (HDL and LDL) basins, as
described in the literature.67–69 In order to implement this
method, we first calculate free energy surfaces for mul-
tiple system sizes (N = 120, 192, 300, 400, 600, 900) at
the coexistence pressure for the temperature of interest.
An example free energy surface is shown in Figure 9(a)
for N = 900, Tr = 0.92. The free energy surfaces were
then contracted along the Q6 dimension via Equation
(18) in order to obtain F(ρ), and the height of the barrier
separating the HDL and LDL basins, FB , was measured
along with the density at which the maximum occurs,
ρB . As shown in Figure 9(c), for sufficiently large sys-
tems the LLPT obeys the N 2/3 scaling characteristic of
first-order phase transitions.
According to the finite-size scaling formalism of

Binder67–69 the effective surface tension for a finite-size
system, γL , can be written as:

βγL = βFB
L

2L2
= c1

1

L2
+ c2

ln L

L2
+ βγ (21)

where, L is the linear extent of the system which we
define as L = (N/ρB)1/3, FB

L is the free energy barrier
height for the system of linear extent L , γ is the infinite
system-size (thermodynamic limit) surface tension, c1
and c2 are constants, and β = 1/kBT . Note that the fac-
tor of 2 in the denominator of βFB

L /2L2 arises from the
formation of two interfaces in a simulationwith periodic
boundary conditions.
It is clear from Equation (21) that the term βFB

L /2L2

becomes linear in the scaling variable ln(L)/L2 as the
system size (and hence, L) approaches infinity. There-
fore, the procedure for determining the surface tension
in the thermodynamic limit is to plot βFB

L /2L2 vs.
ln(L)/L2 for progressively larger system sizes, and
when the system sizes are large enough such that the
data transitions to a linear regime, extrapolate the lin-
ear data to ln(L)/L2 = 0. The y-intercept of this linear
extrapolation is βγ , the infinite system-size surface ten-
sion scaled by kBT . This procedure is illustrated in
Figure 10(a). Note that we observe the effective inter-
facial tension is a non-monotonic function of system
size, as was found to occur for the three dimensional
Ising model70 and the liquid-vapor transition of the
Lennard-Jones potential.69 It is believed that this non-
monotonicity occurs due at least in part to the interaction
between two interfaces in the periodic simulation box
for smaller systems.69

In the vicinity of a critical point, the surface tension
displays the following universal behavior:69

Figure 11. Liquid-liquid surface tension vs.
reduced temperature. The surface tensions calcu-
lated in this work via free energy barrier finite-size
scaling are represented by the blue circles, while
the surface tensions calculated by Buldyrev et
al., 54 via the explicit-interface method are repro-
duced (with permission) as red circles. Error bars
for our data are smaller than the symbol size. All
surface tensions were converted into physical units
with the conversion factors of Xu et al. 47 The
dotted blue curve is the asymptotic scaling pre-
dicted by Equation (22), employing our calculated
values of μ = 1.33, and γ0 = 89.4 mJ/m2. Sub-
stituting the expected value of μ = 1.26 imparts
slightly higher curvature, which slightly increases
the predicted asymptotic-locus of surface tensions.
We note that the calculations of Buldyrev et al., 54

were performed with a slightly modified energy
parameterization of UR/U0 = 3.56 (see Model
and Numerical Methods section for more details),
hence for consistency we utilized the reported41

T LL
C of the original Jagla parameterization to calcu-

late the reduced temperatures for our data, and the
reported53 T LL

C of the modified parameterization
to calculate the reduced temperatures of Buldyrev
et al.54 This slight difference in energy param-
eterization may also impart slight differences to
the calculated surface tensions at corresponding
reduced temperatures; however, the asymptotic
critical scaling should still be observed.

γ =
{

γ0T̂ μ ; T < TC
0 ; T > TC

(22)

where, T̂ = |(T − TC)/TC |, μ is the universal critical
exponent71 for surface tension, which is equal to 1.26
for the 3-dimensional Ising universality class,68 γ0 is the
system-dependent coefficient of proportionality, and TC
denotes the critical temperature, which in the context of
the liquid-liquid critical point is T LL

C . We also note that
the finite-size scaling analysis of Gallo and Sciortino72
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has verified that the Jagla potential indeed belongs to the
Ising universality class. As shown in Figure 10(b), the
calculated value ofμ is 1.33,which is in good agreement
(6% discrepancy) with the expected value of 1.26.

The surface tensions reported in Figure 10(b) are in
Jagla units. In order to facilitate a comparison to water
and other real substances, we employ the conversion
factors of Xu et al., 47 to obtain the surface tension in
units of mJ/m2 as shown in Figure 11. We see that our
calculated surface tensions range from approximately
1 − 3 mJ/m2 for a corresponding reduced temperature
range of 0.97–0.92, which is quite similar to the reported
value of 2mJ/m2 for the ST2 model at a reduced tem-
perature of 0.96.

We also compare our results with previously reported
liquid-liquid surface tensions for the Jagla potential. 54

Referring to Figure 11, we see that the calculations of
Buldyrev et al., 54 which require the maintenance of an
explicit interface, do not follow the asymptotic scal-
ing predicted by Equation (22) in the vicinity of the
critical point, and the highest-temperature data points
under-predict the surface tension as the critical point
is approached. As expected, the surface tensions cal-
culated via finite-size scaling of the free energy barrier
appear closer to the theoretically prescribed behavior,
with the surface tension vanishing as described byEqua-
tion (22). While we plot our fit of Equation (22) over
the reduced temperature range 0.8–1 for illustrative pur-
poses, we note that this scaling relation is only expected
to hold in the general vicinity of the critical point, and
hence we expect the explicit-interface calculations54 are
accurate at conditions remote from the critical point.

4. Conclusions

In this work, we provide rigorous free energy surface
calculationswhichdemonstrate the existence of a liquid-
liquid phase transition in the Jagla potential. While
equation of state andfinite-size scaling calculations have
been performed to date, free energy surface calcula-
tions (which represent the free energy of a system as
a function of density and an additional order parame-
ter that distinguishes liquid and crystal configurations)
have become the gold standard in the LLPT literature.4–9

We find that free energy surfaces of the Jagla model
are qualitatively identical to those calculated5–9 for the
ST2model ofwater, even including the noticeably larger
width in theQ6 dimensionof theLDLbasin as compared
to the HDL basin. Because the LLCP is located slightly
above the freezing line,43 a significant portion of the
LLPT locus is only moderately metastable with respect
to crystallization. This fact, coupled with the relatively

fast relaxation dynamics in the vicinity of the LLPT
and the computationally inexpensive nature of the Jagla
potential, allowed us to explore free energy surfaces at
reduced temperatures well below those accessible for
the ST2 model of water. Our calculated free energy sur-
faces show excellent agreement with our own equation
of state calculations, which lends further confidence to
the several equation of state studies of the Jagla potential
in the literature.40–43 We note that, at temperatures well
below the LLCP, as in Figure 5 (Tr = 0.79), we found
it difficult to sample the region of high density and high
Q6. Although this region of the free energy surface is
not of particular importance to the LLPT itself, a more
focused effort to resolve this portion of the free energy
surface may reveal alternative pathways to crystalliza-
tion (particularly at higher pressures, beyond the LDL
spinodal, where crystallization information is lacking
in this model43,47), and as such it constitutes an area for
future research.
In addition to our free energy analysis, we also

performed a brief analysis of bond-orientational and
translational order in the context of the LLPT. We point
out that, while theHDLphase is the lower-entropy phase
in the Jaglamodel, it in fact has lower bond-orientational
order than the LDL phase in these finite-size simula-
tions. However, we find that the HDL phase has a higher
degree of translational order than the LDL phase, which
appears to be clearly reflected in the entropy, truncated
at the two-body interactions.
We performed extensive calculations of the char-

acteristic relaxation times of density and Q6 for the
HDL and LDL liquids in order to compare the relax-
ation time scales over a range of conditions where each
liquid was stable, at coexistence, and metastable with
respect to the other liquid. These relaxation time cal-
culations are of particular relevance because they have
been a centerpiece of arguments,6,16 which argue against
the possible existence of pure-component metastable
liquid-liquid phase separations. Hence, we performed
our calculations for the Jagla potential at temperatures
forwhich the LLPT ismetastablewith respect to crystal-
lization, and make appropriate comparisons with ST2.
Contrary to the assertions of Limmer and Chandler,6,16

and in agreement with the findings of Palmer et al., 9,66

for ST2,we donot find any range of conditions forwhich
the relaxation of Q6 is orders of magnitude slower than
that of density in the Jagla model. Interestingly, we find
exactly the opposite scenario for theHDLphase (namely
τρ >> τQ6 ), which is also in agreement with observa-
tions by Palmer for the HDL phase of ST2.66 For the
LDL phase of Jagla, the relaxation times are much more
comparable, and as we vary pressure along an isotherm
we observe an inversion in which the variable relaxes
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more slowly. When comparing the two phases with one
another, it is clear that the HDL phase is much more
slowly relaxing owing to the very slow relaxations in
density. This result is in contrast with the ST2 model
for which the LDL phase is more slowly relaxing. The
aforementioned results for relaxation rates are shown to
apply across multiple temperatures (see “Appendix” for
results at higher temperature), and categorically refute
the notion that a separation of time scales of the sort
τQ6 >> τρ is “self-evident” at supercooled conditions.
While relaxation times of density and Q6 have been cal-
culated for the ST2 potential in many different studies,
there has yet to be a comprehensive investigation of how
these relaxation times change with varying temperature
and pressure. Such a calculation may prove instructive
in better understanding the relative relaxation rates of
these quantities within the broader context of the LLPT.
The surface tension is of intrinsic importance to the

study of phase transitions, yet the calculation of surface
tensions associatedwith a pure-component liquid-liquid
phase transition is still relatively unexplored. One esti-
mation has been made for the LLPT of ST2,9 and
several state points were calculated54 for the LLPT
of Jagla by simulating an explicit interface in a very
large system and evaluating elements of the pressure
tensor. Since the explicit-interface method becomes
problematic in the vicinity of a critical point, we per-
formed a free energy barrier scaling analysis67–69 at
three reduced temperatures near the critical point in
order to calculate the infinite system-size surface ten-
sion.Our calculated surface tensions very closely follow
the predicted asymptotic critical scaling,69 and com-
parison with the previously reported explicit-interface
results54 show considerable improvement in the vicinity
of the critical point, as expected. Our free energy sur-
face calculations show that obtaining results at reduced
temperatures as low as 0.79 is computationally tractable
for the Jagla potential (Figure 5). Hence, one can in
principle use free energy barrier scaling to determine
liquid-liquid surface tensions for the Jagla potential at
conditionsmore remote from the critical point than those
explored here.Wenote that a study dedicated to calculat-
ing liquid-liquid surface tensions in the Jagla potential
may be better suited to an approach which directly cal-
culates a free energy profile as a function of density
alone67,69 (i.e., F(ρ)), provided suitable precautions are
taken to monitor Q6 and ensure that crystallization does
not occur.
Despite their very different functional forms, it has

been long appreciated43,46 that the isotropic Jagla poten-
tial qualitatively reproduces several of the anomalous
behaviors found in considerably more complex models
of network-forming fluids such as water. Throughout

this work, we havemade it a point to compare our results
for the Jagla model with those of the ST2 model of
water in order to emphasize key similarities and differ-
ences between the two, particularly within the context
of the LLPT. It is our hope that this study will contribute
towards an elucidation of which aspects of a model are
necessary, sufficient, and/or prohibited for the realiza-
tion of pure-component liquid-liquid phase separation.
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Appendix

A.1 Free energy sampling to the crystal phase

In a recent publication, Palmer et al., 9 sampled the free
energy surface of ST2 to the stable crystal basin and
reversibly sampled back to the LDL phase.9 These cal-
culations categorically refuted the assertion6 that the
appearance of an LDL basin in preliminary free energy
surface calculations5 of ST2waterwas due to the dispar-
ity in relaxation times between density and Q6, coupled
with constraining free energy surface calculations to a
liquid-like range of Q6. We performed analogous cal-
culations for the Jagla potential at the condition T =
0.06ε0/kB , P = 0.02ε0/r 30 , which is well below the
reported equilibrium freezing line.43 As shown in the
Figure 12, the crystal basin is of significantly lower free
energy than the HDL and LDL basins as one would
expect at substantially supercooled conditions. How-
ever, we note that the crystalline configurations sampled
the high-Q6 region were defect-rich due to the use of a
cubic simulation box (the thermodynamically favored
HCP crystal phase does not have a cubic unit cell),
and hence the depth of the free energy basin is under-
predicted.73 We will address this point below, but we
note here that this is not of significant consequence, as
our primary concern was with whether the LDL basin
and LDL-crystal transition barrier would be identically
recovered upon performing calculationswhichwere ini-
tiated with a crystal configuration, as explained below.
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Figure 12. Free energy surface for the Jagla
potential, at T = 0.06ε0/kB , P = 0.02ε0/r30 ,
N = 300 particles. All simulations were car-
ried out with a standard cubic system geometry
and periodic boundary conditions. Contour spac-
ing is 5kBT , and the statistical uncertainties are
less than, or on the order of 1− 2kBT for most of
the bins, with bins near the crystal basin exhibit-
ing uncertainties as large as 5kBT . The LLPT is
clearly metastable with respect to crystallization
at this condition; however, defects in the HCP
crystal associated with the artificial constraint of a
cubic simulation box geometry produce a crystal
basin which is too shallow.

Once the ‘forward’ (LDL → crystal) free energy sur-
face shown in Figure 12 was calculated, we computed
the free energy surface in the ‘reverse’ (crystal → LDL)

direction by initiating the reverse simulations with a
crystal configuration taken from a simulation near the
minimum of the crystal basin in Figure 12. Free energy
profiles obtained by contracting the forward and reverse
free energy surfaces are shown in Figure 13(a). As
expected, there is significant hysteresis in the vicinity
of the crystal basin associated with the use of a cubic
simulation box and the presence of ample defects in the
starting crystal configuration. However, the purpose of
this preliminary calculation was not to accurately deter-
mine the precise free energy change upon transitioning
from the LDL phase to the crystal phase, but rather
to observe whether the LDL basin would be recovered
upon performing the calculations which were initiated
with a crystal configuration. Indeed, for Q6 < 0.3 there
is no hysteresis within statistical uncertainties and the
LDL basin is recovered identically.

In order to obtain better agreement between the crys-
tal basin depths of the forward and reverse calculations,
we implemented non-isotropic volume moves,65 allow-
ing the box length to vary independently in all three

dimensions while maintaining right angles between all
vertices. Because the application of non-isotropic vol-
ume moves in liquid (i.e., low Q6) simulations could
lead to unfettered box elongation, which would cause
erroneous results if one of the box dimensions became
shorter than the cutoff distance of the model, we imple-
mented cubic simulation box geometry for Q6 ≤ 0.2.
As shown in Figure 13(b), the agreement between the
forward and reverse calculations is much better, with
the depths of the crystal basin minima being statistically
indistinguishable (within one standard deviation). How-
ever, we note that for the reverse case the Q6 value of
the crystal basin minimum is shifted lower by approxi-
mately 0.02, and inboth cases the crystal basinminimum
occurs at a Q6 value lower than the expected value for a
perfect HCP lattice57 (0.485), which indicates that there
are still measurable defects. Hence, while including
non-isotropic volume moves significantly improves the
agreement between the forward and reverse simulations,
longer equilibration times and/or more sophisticated
sampling methods74 are needed in order to see an
improvement in reversibility for Q6 > 0.3. We reit-
erate however that the purpose of these calculations is
to demonstrate that, deep within the supercooled region,
the Jagla potential’s LDL phase is not a non-equilibrium
artifact associated with the formation of the stable crys-
tal phase.

A.2 Relaxation times at alternative temperatures

In this work, we study how the characteristic relaxation
times of density and bond-orientational order vary with
pressure along an isotherm. In Figure 8, we illustrated
the behavior at T = 0.06ε0/kB with pressures travers-
ing the stable and metastable regions of each liquid
(we point out once again that the terms ‘stable’ and
‘metastable’ here to refer to the relative stabilities of
the HDL and LDL phases, and not to the overall ther-
modynamic stability of the phase). We also performed
similar calculations a higher reduced temperature, T =
0.065ε0/kB(Tr = T/T LL

C = 0.86), in order to check
whether the interesting observations at T = 0.06ε0/kB
are reproduced. Referring to Figure 14, we note that
the same qualitative behavior is indeed observed for the
relaxation times of density and Q6. In theHDL the relax-
ation times of density are approximately two orders of
magnitude larger than those of Q6(τρ >> τQ6) over the
entire range of pressures studied, and furthermore the
loci of τρ and τQ6 do not vary drastically with pressure,
with both generally following the same trend. In the
LDL the relaxation times of density and Q6 are much
more similar over the majority of the pressures studied,
with the exception of the vicinity of the spinodal. As
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Figure 13. Contracted free energy for the Jagla potential, at T = 0.06ε0/kB ,
P = 0.02ε0/r30 , N = 300 particles. Simulations in the ‘forward” direction (blue) were
initiated from liquid configurations, while simulations in the ‘reverse’ direction (red) were
initiated with a single crystal configuration taken from near the minimum of the crystal basin
of the corresponding ‘forward’ calculation. The free energy contractions were performed for
densities ≤ 0.325r−3

0 so as to exclude the HDL basin.The free energy profiles are shifted
such that they have the same free energy at the minimum of the LDL basin. (a) Standard cubic
system geometry, as shown in Figure A.1.1. (b) Rectangular prism box geometry, where the
length of all three box sides are allowed to vary independently of one another for simulations
with Q6 > 0.2. For Q6 ≤ 0.2, cubic box geometry was employed. Notice that in both cases,
(a) and (b), there is no hysteresis (within statistical uncertainties) for Q6 < 0.3. As expected,
significant improvement in the high-Q6 agreement between the forward and reverse cal-
culations is found with the incorporation of non-isotropic volume moves, although more
sophisticated sampling techniques and longer simulation times may be required in order to
obtain perfect agreement in this region. Error bars are the standard deviation of 200 contracted
bootstrapped free energy surfaces.62

Figure 14. Characteristic relaxation times of density and Q6 as a function of pressure for unconstrained
NPT MC simulations at T = 0.065ε0/kB (N = 300 particles). The pressure Pbinodal (grey hashed line) is
the calculated liquid-liquid coexistence pressure at this temperature, and Pspinodal (solid black line) denotes
the spinodal pressure of the phase (HDL, LDL). For pressures in between Pbinodal and Pspinodal (denoted
“Metastable Region” or abbreviated as “M.R.”), the liquid phase of interest is metastable with respect to
the other liquid phase. The data points are the average of the relaxation times computed individually for
each of the 20 independent simulations via Equation (20), and the lines are a guide to the eye. Error bars
represent the standard deviation of the relaxation times for the 20 runs.

at T = 0.06ε0/kB , we observe an inversion in which
variable relaxes more slowly for the LDL. Note that,
because we are operating at a higher reduced tempera-

ture (i.e., closer to the critical temperature), theHDLand
LDL metastable regions are narrower, and the approach
to the spinodals is more challenging.
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A.3 Free energy surfaces for the generalized family
of Jagla potentials

The Jagla potential is a fascinatingly simple model
which captures various anomalies exhibited by models
of much greater complexity, such as those of atomistic
water. While the original parameterization of the Jagla
potential capturesmanyof the keybehaviors of network-
forming liquids such as water, one may adjust the
potential’s parameters (by varying the length scales r1
and r2, and the depth of the potential-minimum located
at r1) so as to continuously transform it to a ramp-based
approximation of the Lennard-Jones potential. This is
interesting because, unlike water, the liquid phase of the
Lennard-Jones model is an archetypical ‘simple liquid’.
Whence, by exploring the generalized family of Jagla
potentials one may study the change in phenomenol-
ogy as the model varies from the original (anomalous)
Jagla model to the (simple) Lennard-Jones model. This
continuous transformation should hypothetically incur
a loss of all of the anomalous properties of the ramp-
potential, as well as the disappearance of the LLPT,
which does not exist for the Lennard-Jones model. This
type of calculation was first performed by Gibson and
Wilding,42 who utilized equation of state calculations
in the NPT ensemble to examine the phase behavior of
these models, along with multicanonical Monte Carlo,
and a ‘crude’ version of finite-size scaling analysis to
locate the LLPT and estimate critical parameters. More
recently, Luo et al., 50 performed an analogous study
on the Jagla potential via discrete molecular dynam-
ics in which they instead examine the behavior of the
Widom line at conditions above the critical tempera-
ture for multiple potential parameterizations. Although
each study differed slightly by the manner in which
the Jagla potential was modified, both efforts yielded
similar results: upon decreasing the ratio r1/r0, the
LLCP moves to lower temperatures and higher pres-
sures, and the slope of the liquid-liquid coexistence line
decreases, eventually becoming negative. Furthermore,
Gibson and Wilding42 explicitly report a concomitant
increase in the temperature of spontaneous crystalliza-
tion (i.e., the loss of liquid stability) upon decreasing
r1/r0. We note once again that these authors refer to
the onset of spontaneous crystallization as the ‘freezing
point’, which is not to be confused with the equilibrium
freezing/melting point. Both studies42,50 also indepen-
dently report that at a length scale ratio r1/r0 ≈ 1.59
the LLCP becomes prohibitively difficult to locate due
to the onset of spontaneous crystallization near the criti-
cal point. This length scale ratio also happens to be in the
immediate vicinity of where the slope of the coexistence
line changes from positive to negative.

We will now study the generalized family of Jagla
potentials described by Gibson and Wilding42 via free
energy surface calculation.By evaluating the free energy
surfaces, we can unambiguously elucidate the existence
of an LLPT while avoiding the crystallization issues
which plagued previous studies in the vicinity of r1/r0 ≈
1.59.Note that for eachvalue of r1/r0 studied,we choose
all other model parameters to be the same as those used
by Gibson and Wilding42 (refer to Table 1 of that work
for additional model parameters).
The state points for calculation of free energy surfaces

were chosen as follows. For a given value of r1/r0, the
critical temperature and pressure were extracted from
Figure 4 of Gibson and Wilding,42 and the temper-
ature was chosen such that the reduced temperature
(Tr = T/T LL

C ) was approximately 0.96–0.97. The
reasons for this choice of reduced temperature are
many-fold. First and foremost, we have performed free
energy surface calculations for the original Jagla poten-
tial (r1/r0 = 1.72) at the same reduced temperatures
(refer to Figure 6). Furthermore, this reduced temper-
ature is well outside of the range of the reported42

uncertainties associated with the critical temperatures,
while still maintaining high enough temperatures to
ensure the fastest-possible dynamics. After determining
the temperature for a particular parameterization, the
approximate coexistence pressure was then estimated
from the reported42 slope of the coexistence line for
that r1/r0 value. Multiple pressures were investigated
to account for the inherent uncertainty in the afore-
mentioned estimation of the coexistence pressure, and
reweighting in pressure was applied to the free energy
surfaces search for a LLPT in the vicinity of the simu-
lated state points. Free energy surfaces for r1/r0 = 1.64
are provided in Figure 15. For this parameterization, the
LLPT still clearly exists, and we see the free energy
barrier between the liquid phases is very comparable to
those observed for the original Jagla parameterization
with a system of the same size.
Referring to Figure 16, one sees that upon decreas-

ing r1/r0 to 1.62 the qualitative features of the free
energy surface begin to exhibit noticeable changes with
the incursion of a distinctive trough at lower densities
which appears to encroach upon the LDL basin. While
higher Q6 values were not systematically studied, it
would appear that this trough leads to the stable crystal
basin. We note that the appearance of an LDL basin in
Figure 16(b) is tenuous, as reweighting to 0.1132ε0/r 30
from 0.115ε0/r 30 indicates existence of an LDL basin,
whereas reweighting to 0.1132ε0/r 30 from 0.110ε0/r 30
does not show a distinct (≥1kBT ) barrier between the
LDLand the trough.At this point, additional simulations
in the vicinity of 0.1132 ε0/r 30 are required. However,



A free energy study of the liquid-liquid phase transition 819

Figure 15. Free energy surfaces for the adjusted Jagla potential, with r1/r0 = 1.64. The simulation
conditions are: T = 0.0614ε0/kB , N = 300 particles, and pressures of (a) 0.0865ε0/r30 , (b) 0.0885ε0/r

3
0 ,

and (c) 0.0915ε0/r30 . The free energy surfaces were calculated by reweighting from a simulation performed
at P = 0.0880ε0/r30 (not shown). Contour spacing is 1kBT , and the statistical uncertainties are less than or
approximately equal to 0.25kBT for most of the bins.

Figure 16. Free energy surfaces for the adjusted Jagla potential, with r1/r0 = 1.62. The simulation
conditions are: T = 0.0618ε0/kB , N = 300 particles, and pressures of (a) 0.110ε0/r30 , (b) 0.1132ε0/r

3
0 ,

and (c) 0.115ε0/r30 . The free energy surface in panel (b) was calculated by reweighting the surface shown in
panel (c). Contour spacing is 1kBT , and the statistical uncertainties are less than or approximately equal to
0.25kBT for most of the bins, except in the vicinity of the trough at low densities, where the uncertainty is
on the order of 1 − 2kBT .

regardless of whether or not a distinct barrier exists
between the LDL and the steep trough at these con-
ditions, it is clear that the signature of an LDL basin is
weak at best.
When the r1/r0 ratio is further lowered to 1.60, as

shown in Figure 17, no evidence of an LDL basin
is found for the range of temperatures and pressures
explored. Indeed, only a single liquid basin appears in
the free energy surface, along with an even more pro-
nounced trough. Reweighting between pressures 1.40
and 1.45ε0/r 30 , one observes that the depth of the sin-

gle, high-density, liquid basin decreaseswith decreasing
pressure, as expected, until the liquid becomes unstable.
We did not find any evidence of an LDL basin at these
conditions for r1/r0 = 1.60.

We also note that, unlike the state points explored for
r1/r0 = 1.62 and 1.64, the autocorrelation functions of
density (and to a lesser extent, Q6) for r1/r0 = 1.60
exhibit extreme dynamic heterogeneity in the low den-
sity region (i.e., in the vicinity of the trough shown in
Figure 17) at the conditions explored. This behavior is
illustrated in Figure 18. At present, it remains unclear
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Figure 17. Free energy surfaces for the adjusted Jagla potential, with r1/r0 = 1.60. The simulation
conditions are: T = 0.0616ε0/kB , N = 300 particles, and pressures of (a) 0.140ε0/r30 , (b) 0.1415ε0/r

3
0 ,

and (c) 0.145ε0/r30 . The free energy surface in panel (b) was calculated by reweighting the surface shown in
panel (c). Contour spacing is 1.5kBT in order to more clearly visualize the trough region, and the statistical
uncertainties are less than or approximately equal to 0.25kBT for most of the bins, except in the vicinity of
the trough at low densities, where the uncertainty is on the order of 1 − 2kBT .

Figure 18. Autocorrelation functions of (a) density and (b) Q6 for the adjusted Jagla potential, with
r1/r0 = 1.60. The simulations are NPT MC subject to umbrella constraints as described in Section 2.2.
The simulation conditions are: T = 0.0616ε0/kB , and P = 0.145ε0/r30 (N = 300 particles). The target
values of density and Q6 for the umbrella constraints areρ∗ = 0.035 r−3

0 , and Q∗
6 = 0.05 in order to explore

conditions in the vicinity of the low-density trough. The thin curves shown are the autocorrelation functions
for each of the 20 independent simulations, whereas the thick red curves are the average autocorrelation
functions of all 20 simulations.Notice the large degree of dynamic heterogeneity in density autocorrealtions.

as to why this markedly different behavior occurs; how-
ever, it is clear that such extreme dynamic heterogeneity
indicates that proper equilibration at these conditions is
very difficult.

In summary, as the length-scale ratio r1/r0 is lowered
from the original Jagla parameterization (1.72) towards
the Lennard-Jones limit, our free energy calculations
indicate that the LLPT ceases to exist in the vicinity
of r1/r0 = 1.60. This is coincidentally the region of
parameter space where previous work reported42,50 that
the LLCP was prohibitively difficult to locate due to the
onset of spontaneous crystallization. This length-scale
ratio also happens to be in the immediate vicinity of

where the slope of the coexistence line was predicted
to change from positive to negative. Lower tempera-
tures and additional pressures will need to be explored
in order to assure that the LDL phase does not exist
for this range of parameterization, as the previously
reported42 locus of liquid-liquid critical points may be
inaccurate in this region. However, at the conditions we
explored for r1/r0 = 1.60, we find that the autocor-
relations of density and Q6 begin to exhibit extreme
dynamic heterogeneity at low densities, which makes
accurate calculation of the free energy surface signifi-
cantly more challenging. At this time, the reason for this
change in relaxation behavior remains unclear. Interest-
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ing areas for future work include a detailed free energy
study at additional parameterizations and state points, a
detailed investigation into why a steep trough appears
to form in the free energy surface as r1/r0 is decreased,
and a determination of why dynamic heterogeneity of
density autocorrelations becomes so pronounced in the
low density region as r1/r0 is decreased.

A.4 The relationship between the Landau free energy
and the thermodynamic free energy of phases

We take this opportunity to clarify a point which has
hitherto not been explicitly discussed in several works
regarding free energy surface studies of liquid-liquid
phase transitions. The free energy described by Equa-
tion (16) is a Landau free energy, also referred to as a
free energy density, or a potential of mean force, which
is an abstraction of the free energy over a range of order
parameter space.57,75 Since we perform our calculations
in theNPTensemble, applicationofEquation (16) yields
an abstraction of the Gibbs free energy. In order to
obtain the Gibbs free energy associated with a particu-
lar phase at a given temperature and pressure, G(T, P),
one must perform a double-integration of the surface
over both order parameters,75 choosing the domains of
integration based on the range of order parameters char-
acterizing the phase of interest. The resulting value of
the Gibbs free energy is insensitive to the precise val-
ues of the domain of integration, so long as the region
containing the local minimum in the free energy surface
is included.57,75 We also note that, as mentioned else-
where,57 when comparing multiple free energy basins
on a single surface (i.e., HDL and LDL basins) equality
of basin depths implies equality of Gibbs free energies,
unless the curvatures of the two basins are very differ-
ent. This has been confirmed in our work, where for a
given temperature, the equality of HDL and LDL basin
depths is achieved at the equilibrium pressure predicted
independently from equation of state calculations via
Maxwell equal-area construction.
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